VOLUME I // Preface v // List of Contributors vii // Part 1 : Classical Measure Theory // 1. History of measure theory 1 // D. Paunic // 2. Some elements of the classical measure theory 27 // E. Pap // 3. Paradoxes in measure theory 83 // M. Laczkovich // 4. Convergence theorems for set functions 125 // P. de Lucia and E. Pap // 5. Differentiation 179 // B.S. Thomson // 6. Radon-Nikodým theorems 249 // D. Candeloro and A. Volcic // 1. One-dimensional diffusions and their convergence in distribution 295 // J.K. Brooks // Part 2: Vector Measures // 8. Vector integration in Banach spaces and application to stochastic integration 345 // N. Dinculeanu // 9. The Riesz Theorem 401 // J. Diestel and J. Swart // 10. Stochastic processes and stochastic integration in Banach spaces 449 // J.K. Brooks // ix // x // Contents // Part 3: Integration Theory // 11. Danieli integral and related topics 503 // M.D. Carrillo // 12. Pettis integral 531 // K. Musial // 13. The Henstock-Kurzweil integral 587 // B. Bongiomo // 14. Set-valued integration and set-valued probability theory: An overview 617 // C. Hess // Part 4: Topological Aspects of Measure Theory // 15. Density topologies 675 // W. Wilczytiski // 16. FN-topologies and group-valued measures 703 // H. Weber // 17. On products of topological measure spaces 745 // S. Grekas // 18. Perfect measures and related topics 765 // D. Ramachandran //
VOLUME II // Preface v // List of Contributors vjj // Part 5: Order and Measure Theory //// 19. Riesz spaces and ideals of measurable functions 787 // M. Väth // 20. Measures on quantum structures 827 // A. Dvurecenskij // 21. Probability on MV-algebras 869 // B. Riecan and D. Mundici // 22. Measures on clans and on MV-algebras 911 G. Barbieri and H. Weber // 23. Triangular norm-based measures 947 // D. ? ulnari ? and E. P. Klement // Part 6: Geometrie Measure Theory // 24. Geometrie measure theory: Selected concepts, results and problems 1011 // M. Chlebík // Contents // xi // 25. Fractal measures KJ. Falconer // 1037 // Part 7: Relation to Transformation and Duality // 26. Positive and complex Radon measures in locally compact Hausdorff spaces 1055 T. V. Panchapagesan // 27. Measures on algebraic-topological structures 1091 // P. Zakrzewski // 28. Liftings 1131 // W. Strauss, N.D. Macheras and K. Musial // 29. Ergodic theory 1185 // F. Blume // 30. Generalized derivatives 1237 // E. Pap and A. Takaci // Part 8: Relation to the Foundations of Mathematics // 31. Real valued measurability, some set-theoretic aspects 1261 // A. Java novic // 32. Nonstandard analysis and measure theory 1295 // PA. Loeh // Part 9: Non-Additive Measures // 33. Monotone set-functions-based integrals P. Benvenuti. R. Mesiar and D. Vivono // 1329 // 34. Set functions over finite sets: Transformations and integrals M. Grabisch // 1381 // 35. Pseudo-additive measures and their applications E. Pap // 1403 // 36. Qualitative possibility functions and integrals D. Dubois and H. Prode // 1469 // 37. Measures of information W Sander // 1523 // Author Index Subject Index