Preface xiii // Teaching and Learning with Genetics: Genes, Genomes, and Evolution xviii Support Package xxi // About the Authors of Genetics: Genes, Genomes, and Evolution xxii Manuscript reviewers xxiii Prologue 1 // TOOL BOX P.1 Model organisms 9 // 1 Evolution, Genomes, and Genetics 13 // 1.1 Darwin’s finches: evolution, a story written in the genome and // performed by the genes 13 // 1.2 Genome analysis of Darwin’s finches 16 // 1.3 Connecting genome variation to beak variation 20 // 1.4 Summary: Darwin’s finches and the Great Ideas of Biology 23 // COMMUNICATING GENETICS 1.1 How do we represent gene // and protein names? 22 // 2 The Central Dogma of Molecular Biology 28 // 2.1 Overview: the Central Dogma and the nature of the gene 28 // 2.2 The structure of DNA 29 // 2.3 DNA and the Central Dogma 42 // 2.4 The structure and function of genes: gene regulation 55 // 2.5 Transcription profiles 62 // 2.6 Summary: the Central Dogma 65 // COMMUNICATING GENETICS 2.1 Sequence shorthand 39 // TOOL BOX 2.1 The importance of the DNA backbone: separating DNA molecules by size 32 // TOOL BOX 2.2 Making DNA visible: DNA stains and labels 34 // TOOL BOX 2.3 The importance of the base pair: hybridization 40 // TOOL BOX 2.4 cDNA 43 // 3 Genome Structure, Organization, and Variation 72 // 3.1 Overview: genomes, variation, and evolution 72 // 3.2 Genome size and organization 87 // 3.3 Genes and composition of the genome 98 // 3.4 Genetic change, redundancy, and robustness 100 // 3.5 Which genes are found in the genome? 103 // 3.6 Genetic changes and morphological differences 106 // VIII Full contents // 3.7 Summary: genome structure and variation 122 // TOOL BOX 3.1 Identifying natural variation 73 // TOOL BOX 3.2 DNA sequencing 78 // TOOL BOX 3.3 Genome assembly and annotation 84 // BOX 3.1 Going Deeper How are sequences added to genomes? 88 //
BOX 3.2 GoingDeeper Hox genes as an example of genome and morphological differences 113 // BOX 3.3 Going Deeper The origins of novel genes 120 // 4 Descent with Modification: Continuity and Variation // in the Genome 129 // 4.1 Overview: evolution, replication, and repair 129 // 4.2 Continuity from templates 131 // 4.3 The initiation, polarity, and direction of replication 144 // 4.4 Errors, repair, and variation 153 // 4.5 Types of mutations 159 // 4.6 The fate and future of sequence changes 163 // 4.7 Inferring evolutionary history from sequence changes 168 // 4.8 Summary: descent with modification 183 // TOOL BOX 4.1 Polymerase chain reaction 138 // TOOL BOX 4.2 The application of the enzymes involved in // replication in molecular cloning 148 // TOOL BOX 4.3 Building phylogenetic trees using DNA sequence // data: some examples 176 // BOX 4.1 An Historical Perspective The Meselson-Stahl experiment and semi-conservative replication 133 // BOX 4.2 A Human Angle Telomeres 151 // BOX 4.3 Quantitative Toolkit The Luria-Delbrück fluctuation test 165 // BOX 4.4 A Human Angle Analyzing the Black Death by phylogenetics 172 // 5 The Inheritance of Single-gene Traits 189 // 5.1 Overview: genes and inheritance 189 // 5.2 Mendel: a man and his garden 190 // 5.3 Predicting the outcome of crosses 197 // 5.4 Probability methods for calculating the expected ratios 201 // 5.5 Using pedigrees 207 // 5.6 How do phenotypes arise from genotypes? 211 // 5.7 Summary: Mendel and his peas 212 // COMMUNICATING GENETICS 5.1 Genetic notation for genes and alleles 193 COMMUNICATING GENETICS 5.2 The language of genetics 196 // BOX 5.1 Going Deeper Recessive and dominant alleles 195 // BOX 5.2 An Historical Perspective Did Mendel cheat? 199 // BOX 5.3 Quantitative Toolkit The chi-square test 205 // 6 The Cellular Basis for Mendelian Genetics 219 // 6.1 Overview of Mendel’s contributions 219 //
6.2 Mitosis preserves chromosome number during somatic cell division 220 // 6.3 Meiosis reduces chromosome number during germ cell division // 6.4 Spermatogenesis and oogenesis // 6.5 Meiotic errors // 6.6 Evolutionary origins of mitosis and meiosis // 6.7 Summary: Mendel, meiosis, and molecules putting things together // TOOL BOX 6.1 Tetrads and tetrad analysis // BOX 6.1 Going Deeper Sister chromatid cohesion and the cohesin complex // BOX 6.2 GoingDeeper Molecular mechanisms of crossing over BOX 6.3 GoingDeeper Meiosis in polyploids // 7 X-linked Genes and Sex Chromosomes // 7.1 Overview: sex linkage and sex determination // 7.2 Inheritance of the X chromosome and X-linked genes // 7.3 X chromosome meiotic errors // 7.4 Mechanisms of sex determination // 7.5 Dosage compensation and X chromosomes // 7.6 Summary: X-linked genes and sex determination // COMMUNICATING GENETICS 7.1 Gene names // COMMUNICATING GENETICS 7.2 Pedigree analysis for X-linked genes // BOX 7.1 Going Deeper Sex-limited and sex-influenced traits // BOX 7.2 Going Deeper How do organisms count X chromosomes? // BOX 7.3 A Human Angle Sry, testis-determining factor, and sex determination in mammals // BOX 7.4 Going Deeper The evolution of sex chromosomes // BOX 7.5 Going Deeper DMRT and evolutionary tinkering with sex determination // BOX 7.6 A Human Angle X chromosome inactivation and Xist // 8 The Inheritance of Multiple Genes // 8.1 Introduction: Mendel expanded and extended // 8.2 Two genes on different chromosomes // 8.3 Unexpected phenotypic ratios arising from a single gene // 8.4 Unexpected phenotypic ratios arising from gene interactions // 8.5 A functional definition of a gene: the complementation test // 8.6 More complicated interactions between genes and the environment // 8.7 Summary: the inheritance and phenotypes of two separate genes // TOOL BOX 8.1 The use of epistasis to construct genetic pathways //
BOX 8.1 A Human Angle ABO blood types // BOX 8.2 Going Deeper Pleiotropy and the genome // 9 The Locations of Genes on Chromosomes: Linkage and Genetic Maps // 9.1 Overview of linked and unlinked genes // 9.2 Linked inheritance of genes on the same chromosome 342 // 9.3 Genetic maps 359 // 9.4 Other types of maps 370 // 9.5 Summary: genetic maps, genomes, and evolution 376 // COMMUNICATING GENETICS 9.1 Gametes, phenotypes, and test crosses in mapping 344 // TOOL BOX 9.1 Crossover suppression by balancer chromosomes 351 // BOX 9.1 An Historical Perspective Why didn’t Mendel encounter linkage? 349 BOX 9.2 A Human Angle Red-green color blindness 357 // BOX 9.3 Going Deeper Sex differences in recombination rate 364 // BOX 9.4 Quantitative Toolkit Three-factor crosses 366 // 10 Human Genetic Mapping, Genome-wide Association // Studies, and Complex Traits 383 // 10.1 Overview of human gene mapping and complex traits 383 // 10.2 Linkage and genome-wide associations 385 // 10.3 Microarrays and polymorphisms 389 // 10.4 Haplotypes and human history 396 // 10.5 Complex traits 401 // 10.6 Complex traits and genome-wide association studies 410 // 10.7 Limitations of genome-wide association studies 411 // 10.8 Summary: genome-wide association studies combine evolution, genomes, and genetics 413 // COMMUNICATING GENETICS 10.1 Displaying haplotypes as pie charts 398 BOX 10.1 Going Deeper Linkage disequilibrium 387 // BOX 10.2 A Human Angle Exome sequencing and direct searches for causative mutations 390 // BOX 10.3 Quantitative Toolkit Heritability 405 // 11 Exchange and Evolution 419 // 11.1 Overview: vertical and horizontal transmission of DNA 419 // 11.2 Transformation 422 // 11.3 Conjugation 426 // 11.4 Transduction by viruses 432 // 11.5 Transposable elements 441 // 11.6 Barriers to horizontal gene acquisition 445 // 11.7 Horizontal gene transfer and genome evolution 451 //
11.8 Summary: exchange and evolution by horizontal and // vertical gene transfer 459 // TOOL BOX 11.1 Transformation with plasmid vectors 424 // TOOL BOX 11.2 Applications of site-specific recombination 438 // TOOL BOX 11.3 CRISPR applications: in vivo DNA editing and more 449 // BOX 11.1 Going Deeper Integrative conjugative elements 428 // 12 Transcription: Reading and Expressing Genes 464 // 12.1 Overview of gene expression and its regulation 464 // 12.2 Initiating transcription 467 // 12.3 Regulating the initiation of transcription 472 // 12.4 Chromatin and pre-initiation 490 // 12.5 Completing the transcript 495 // 12.6 From transcript to function 503 // COMMUNICATING GENETICS 12.1 Drawing genes 469 // TOOL BOX 12.1 Reporter genes for the analysis of gene expression 479 // TOOL BOX 12.2 microRNAs as an experimental tool: RNAi 508 // BOX 12.1 A Human Angle How toadstools affect transcription 497 // 13 Translation: From Nucleic Acids to Amino Acids 517 // 13.1 Translation from nucleic acids to polypeptides 517 // 13.2 The process of translation 519 // 13.3 Translational control 527 // 13.4 The intricate beauty of the genetic code 532 // 13.5 Post-translational regulation 544 // 13.6 Summary: gene expression and its regulation 547 // TOOL BOX 13.1 Evolution, genes, and genomes: sequence comparisons 539 // BOX 13.1 Going Deeper Nonsense suppressors 525 // BOX 13.2 Going Deeper The role of translational regulation in patterning the anterior-posterior axis of Drosophila melanogaster 530 // 14 Networks of Gene Regulation 555 // 14.1 Overview: networks of gene regulation 555 // 14.2 Operons in bacteria 558 // 14.3 Principles of gene regulatory networks 576 // 14.4 Summary: transcription networks 590 // TOOL BOX 14.1 Chromatin immunoprecipitation (ChIP) 581 // BOX 14.1 Going Deeper Attenuation and the trp operon 562 //
BOX 14.2 Quantitative Toolkit Bacterial growth curves: a quantitative perspective 566 // BOX 14.3 Going Deeper Genetic polarity in bacteria 574 // 15 Genetic Analysis of Cellular Processes 597 // 15.1 Overview: the power of genetic screens 597 // 15.2 True in the elephant? A model for gene regulation from genetic screens of lactose utilization in bacteria 606 // 15.3 A foot in the door: Drosophila embryonic development 614 // 15.4 Ordering genes into pathways 623 // 15.5 Summary: genetic analysis 635 // TOOL BOX 15.1 Genome-wide mutant screens 604 // TOOL BOX 15.2 No lac of reagents 608 // BOX 15.1 An Historical Perspective Archibald Garrod and inborn errors of metabolism 599 // BOX 15.2 Quantitative Toolkit Estimating the number of genes: saturation in genetic screens 620 // 16 The Genetics of Populations 642 // 16.1 Overview of population genetics 642 // 16.2 Allele frequencies and populations at equilibrium 645 // 16.3 Changes in genotype frequencies: non-random mating 652 // 16.4 Factors affecting allele frequencies 657 // 16.5 Selection and differential reproductive ability 670 // 16.6 Population genetics of bacteria and other asexually // reproducing organisms 687 // 16.7 Summary: the genetic structure of populations 691 // COMMUNICATING GENETICS 16.1 Depicting haplotype frequencies 649 COMMUNICATING GENETICS 16.2 Muller plots 688 // BOX 16.1 Quantitative Toolkit Quantitative concepts in population genetics 658 BOX 16.2 Going Deeper Speciation 663 // BOX 16.3 A Human Angle Tracking migration with mitochondrial and Y chromosome DNA 665 // BOX 16.4 An Historical Perspective Selection and adaptation 672 // BOX 16.5 Going Deeper Types of selection 675 // BOX 16.6 A Human Angle The sickle-cell trait heterozygote advantage 678 // 17 Metagenomes: Genome Analysis of Communities 698 // 17.1 What is a metagenome? 698 // 17.2 The composition of metagenomes and microbiomes 702 //
17.3 Selection at the level of the holobiont 709 // 17.4 Connecting metagenome composition and structure to metabolism and community function 716 // 17.5 Metagenomes in action 720 // 17.6 Summary: metagenomes, evolution, genomes, and genetics 722 // COMMUNICATING GENETICS 17.1 ls"microbiome"a"biome" word or an "omics" word? 699 // TOOL BOX 17.1 Culture barriers in bacteria 703 // BOX 17.1 Going Deeper How should we define bacterial species? 707 // BOX 17.2 A Human Angle Transplanting microbiomes 712 // BOX 17.3 A Human Angle Ancient metagenomes 717 // Glossary 728 // Index 745