Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 22.04.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

0 (hodnocen0 x )
Berkeley, CA : Apress : Imprint: Apress, 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 

ISBN 978-1-4842-2734-3 (e-kniha)
ISBN 9781484227336 (print)
Printed edition: ISBN 9781484227336
Chapter 1: What is Deep Learning? -- Chapter 2: Mathematical Review -- Chapter 3: A Review of Optimization and Machine Learning -- Chapter 4: Single and Multi-Layer Perceptron Models -- Chapter 5: Convolutional Neural Networks (CNNs) -- Chapter 6: Recurrent Neural Networks (RNNs) -- Chapter 7: Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks -- Chapter 8: Experimental Design and Heuristics -- Chapter 9: Deep Learning and Machine Learning Hardware/Software Suggestions -- Chapter 10: Machine Learning Example Problems -- Chapter 11: Deep Learning and Other Example Problems -- Chapter 12: Closing Statements.-.
Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power..

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC