Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 23.01.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

0 (hodnocen0 x )
Singapore : Springer Singapore : Imprint: Springer, 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 

ISBN 978-981-10-2915-8 (e-kniha)
ISBN 9789811029134 (print)
Printed edition: ISBN 9789811029134
Introduction -- Eigenvalue and singular value decomposition -- Principal component analysis neural networks -- Minor component analysis neural networks -- Dual purpose methods for principal and minor component analysis -- Deterministic discrete time system for PCA or MCA methods -- Generalized feature extraction method -- Coupled principal component analysis -- Singular feature extraction neural networks.
This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields..

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC