Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 04.09.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
Boca Raton : CRC Press, Taylor & Francis, [2017]
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781315372273 (e-book : PDF)
ISBN 9781482258561 (e-book: PDF)
ISBN 9781315335988 (e-book: Mobi)
ISBN !9781482258554 (chyb.) (hardback)
Tištěná verze : ISBN 9781482258554
Chapter 1. Deformable model-based methods for image segmentation / Marwa Ismail, Ahmed El Tanboly, Magdi El-Azab, Ayman El-Baz, and Robert Keynton -- Chapter 2. Domain knowledge for level set segmentation in medical imaging : a review / Klaus D. Toennies, Tim Konig, Oliver Gloger -- Chapter 3. Robust image segmentation with a parametric deformable model using learned shape priors / Ahmed Soliman, Marwa Ismail, Ali Taki Eldeen, Georgy Gimel’farb, Ayman El-Baz, and Robert Keynton -- Chapter 4. A 3D active shape model for left ventricle segmentation in MRI / Carlos Santiago, Jacinto C. Nascimento, Jorge S. Marques -- Chapter 5. Model-based segmentation algorithms for myocardial magnetic resonance imaging sequences / Antoine Vacavant, Kevin Bianchi, Guillaume Cerutti, Lucie Cassagnes, Laurent Sarry, and Laure Tougne -- Chapter 6. Incorporating shape variability in implicit template deformation for image segmentation / Raphael Prevost, Remi Cuingnet, Benoit Mory, Laurent D. Cohen, and Roberto Ardon -- Chapter 7. Exudate detection in fundus images using active contour methods and regionwise classification / Balazs Harangi and Andras Hajdu -- Chapter 8. Preprocessing, local features and fuzzy logic-based image segmentation / Umer Javed, Muhammad Mohsin Riaz, Abdul Ghafoor, and Tanveer Ahmed Cheema -- Chapter 9. Model-based curvilinear network extraction toward quantitative microscopy / Ting Xu, Chao Zhou, Xiaolei Huang -- Chapter 10. Level set-based cell segmentation using convex energy functionals / Jan-Philip Bergeest and Karl Rohr -- Chapter 11. Histogram-based level set methods for medical image segmentation / Wei Yu and Jifeng Ning -- Chapter 12. An appearance-guided deformable model for 4D kidney segmentation using diffusion MRI / Mohamed Shehata, Fahmi Khalifa, Ahmed Soliman, Ali Taki Eldeen, Mohamed Abou El-Ghar, Tarek Eldiasty, Ayman El-Baz, and Robert Keynton
Chapter 13. Prostate segmentation using deformable model-based methods : a review / Islam Reda, Mohammed Elmogy, Ahmed Aboulfotouh, Marwa Ismail, Ayman El-Baz, and Robert Keynton -- Chapter 14. A novel NMF-based CAD system for early diagnosis of prostate cancer by using 4-D diffusion weighted magnetic resonance images (DW-MRI) / Ahmed Soliman, Patrick McClure, Fahmi Khalifa, Ali Taki Eldeen, Mohamed Abou El-Ghar, Tarek El-Diasty, Jasjit S. Suri, Adel Elmaghraby, and Ayman El-Baz -- Chapter 15. Distance regularized level sets for segmentation of left and right ventricles / Yu Liu, Shaoxiang Zhang, Xiaoping Yang, Jia Wu, Chunming Li -- Chapter 16. Salient object segmentation with shape-constrained level set / Bin Wang, Xinbo Gao, Dacheng Tao, Xuelong Li, Souleymane Balla-Arabe -- Chapter 17. Tracking and segmentation of the endocardium of the left ventricle in 2D ultrasound using deep learning architectures and Monte Carlo sampling / Jacinto C. Nascimento, Gustavo Carneiro and Antonio Freitas -- Chapter 18. A shortest path approach to interactive medical image segmentation / Jonathan-Lee Jones, Xianghua Xie, and Ehab Essa -- Chapter 19. Local statistical models for ultrasound image segmentation / Djamal Boukerroui -- Chapter 20. Image segmentation with physical noise models / Daniel Tenbrinck, Xiaoyi Jiang -- Chapter 21. A fast lung segmentation approach / Maryam El-Baz, Mohamed A. El-Ghar, and Ayman El-Baz -- Chapter 22. Fully automatic segmentation of hip CT images via landmark detection-based atlas selection and optimal surface detection / Chengwen Chu and Guoyan Zheng.
001478433
(OCoLC)966386411

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC