Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 04.09.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
First edition
[Místo vydání není známé] : Pan Stanford, 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781315322278 (e-kniha : Mobi)
ISBN 9781315364896 (e-kniha : PDF)
ISBN 9789814669023 (vázáno)
Tištěná verze : ISBN 9789814669023
These days, advanced multiscale hybrid materials are being produced in the industry, studied by universities, and used in several applications. Unlike for macromaterials, it is difficult to obtain the physical, mechanical, electrical, and thermal properties of nanomaterials because of the scale. Designers, however, must have knowledge of these properties to perform any finite element analysis or durability and damage tolerance analysis. This is the book that brings this knowledge within easy reach.What makes the book unique is the fact that its approach that combines multiscale multiphysics and statistical analysis with multiscale progressive failure analysis. The combination gives a very powerful tool for minimizing tests, improving accuracy, and understanding the effect of the statistical nature of materials, in addition to the mechanics of advanced multiscale materials, all the way to failure. The book focuses on obtaining valid mechanical properties of nanocomposite materials by accurate prediction and observed physical tests, as well as by evaluation of test anomalies of advanced multiscale nanocomposites containing nanoparticles of different shapes, such as chopped fiber, spherical, and platelet, in polymeric, ceramic, and metallic materials. The prediction capability covers delamination, fracture toughness, impact resistance, conductivity, and fire resistance of nanocomposites. The methodology employs a high-fidelity procedure backed with comparison of predictions with test data for various types of static, fatigue, dynamic, and crack growth problems. Using the proposed approach, a good correlation between the simulation and experimental data is established.--Provided by publisher..
001478618
Acknowledgments xvii // Preface xix // 1 Nanostructure Bulk Property Predictions Using Molecular Mechanics 1 // Jerry Housner and Frank Abdi // 1.1 Introduction 1 // 1.1.1 Modeling of the Atomistic Domain Using Molecular Mechanics and Dynamics 4 // 1.1.2 The AMBER Force Field 6 // 1.1.3 The CHARMM Force Field 8 // 1.1.4 Brenner’s Equation for Interatomic Potential Energy Calculation 9 // 1.1.5 Developing Bulk Nanostructure Properties: Atomistic and Continuum Models 11 // 1.1.6 Application to Carbon Nanotubes 14 // 1.1.6.1 Basics of carbon nanotubes 14 // 1.1.6.2 RVE-ECM method applied to SWNTs 16 // 1.1.7 Derived Results in the Literature 18 // 1.2 Summary 19 // 2 Obtaining Material Properties from the Bottom-Up Approach 23 // B. Farahmand // 2.1 Introduction 24 // 2.2 Virtual Testing 27 // 2.3 Virtual Testing from the Bottom-Up Approach 32 // 2.4 Interatomic Potential 41 // 2.5 Measuring Interatomic Forces through the AFM // and STM 44 // 2.6 Molecular Dynamic and N-Body (Atoms) Assessment 46 // 2.7 Summary 54 // 3 Fiber-Matrix Interphase Effects on Damage Progression in Composite Structures 61 // Levon Minnetyon, Xioofeng Su, and Frank Abdi // 3.1 Introduction 62 // 3.2 Effect of Interphase on Composite Mechanics 64 // 3.3 Uniaxial Composite Results 67 // 3.4 Conclusions 72 // 4 Composite Nanomechanics: A Mechanistic Properties // Prediction 75 // Christos C. Chamis // 4.1 Introduction 75 // 4.2 Fundamentals 77 // 4.3 Results and Discussion 83 // 4.3.1 In situ Fabrication Parameters 83 // 4.3.2 Physical Properties 86 // 4.3.3 Heat Conductivities 87 // 4.3.4 Moisture Expansion 89 // 4.3.5 Thermal Expansion 91 // 4.3.6 Mechanical Properties 92 // 4.3.6.1 Moduli 93 // 4.3.6.2 Poisson’s ratios 95 // 4.3.6.3 Uniaxial nanocomposite strengths 96 // 4.3.7 Longitudinal Tension 97 // 4.3.8 Longitudinal Compression 97 // 4.3.9 Transverse Tensile Strength 98 //
4.3.10 Transverse Compressive Strength 99 // 4.3.11 Intralaminar Shear Strength 100 // 4.3.12 Interlaminar Shear Strength 100 // 4.4 Concluding Remarks 101 // 5 Analyzing Interlaminar Shear Strength of Multiscale Composites via Combined Finite Element and Progressive Failure Analysis Approach 105 // Mohit Garg, Frank Abdi, and Stuart McHugh // 5.1 Introduction 106 // 5.2 Methodology and Approach 108 // 5.3 Results and Discussion 111 // 5.4 Conclusions 121 // 6 Validation for Multiscale Composites: Glass/Epoxy/Silica Nanoparticles 125 // Mohit Garg and Parviz Yavari // 6.1 Introduction 126 // 6.1.1 Experimental 126 // 6.2 Methodology 127 // 6.2.1 Multiscale Micromechanics 127 // 6.2.2 Progressive Failure Analysis 129 // 6.2.3 Material Modeling Assumptions 130 // 6.3 Results 131 // 6.4 Conclusions 136 // 7 Influence of Nanoparticles and Effect of Defects on Mode I and II Fracture Toughness and Impact Resistance 137 // Christos C. Chamis, Frank Abdi, Harsh Baid, and Parviz Yavari // 7.1 Introduction 138 // 7.2 Methodology 139 // 7.2.1 Virtual Crack Closure Technique (VCCT) 139 // 7.2.2 Progressive Failure Analysis (PFA) 141 // 7.2.3 Material Modeling Assumptions 142 // 7.3 FE Model and Experimental Setup 143 // 7.4 Results 145 // 7.4.1 Mode I and Mode II Fracture Toughness // Analysis 145 // 7.4.2 Low-Velocity Impact Analysis 147 // 7.5 Conclusions 150 // 8 Prediction/Verification of Composite Electrical Properties and Nano-Insertion Improvement 153 // Levon Minnetyan, Frank Abdi, Christos C. Chamis, and Dade Huang // 8.1 Introduction 154 // 8.1.1 Composite Electrical Conductivity Equations Based on Simplified Micromechanics Theory 155 // 8.2 Computation of Equivalent Electrical Properties of a Composite Material 156 // 8.3 Carbon Nanotube-Inserted Composites 156 //
9 Polymer Nanocomposites as Ablative Materials: A Comprehensive Review 159 // J. H. Koo, M. Notali, J. Tote, and E. Allcorn // 9.1 Introduction 160 // 9.2 Behavior of Thermal Protection Materials 161 // 9.3 Polymer Nanocomposites Review 162 // 9.4 Summary and Conclusions 206 // 10 Antifriction Nanocomposites Based on the Chemically Modified Ultra-High Molecular Weight Polyethylene 215 // Lyudmila A. Kornienko and Sergey V. Panin // 10.1 Introduction 216 // 10.2 Experimental Techniques 217 // 10.3 Results and Discussion 218 // 10.4 Conclusions 238 // 11 Modeling of Mechanical Properties in Nanoparticle // Reinforced Polymers Using Atomistic Simulations 241 // Somit Roy and Avinash Reddy Akepati // 11.1 Introduction 243 // 11.2 Atomistic J-Integral Evaluation Methodology 244 // 11.3 Numerical Evaluation of Atomistic J-Integral 247 // 11.3.1 Preliminary Results of Atomistic J-Integral Calculation Using 4420 Atoms Graphene Sheet 250 // 11.4 Molecular Dynamics Simulations of EPON 862-DETDA Epoxy System 253 // 11.4.1 Materials Characterization 254 // 11.4.1.1 Comparison of mechanical properties with MTU’s simulation results 254 // 11.4.1.2 Comparison with MTU’s experimental results 255 // 11.5 Future Work 256 // 11.6 Discussion 258 // 12 Prediction of Effect of Waviness, Interfacial Bonding, and // Agglomeration of Carbon Nanotubes on Their Polymer Composites 261 // Mohit Gorg, Frank Abdi, and Jerrold Housner // 12.1 Introduction 262 // 12.2 Experiment 263 // 12.3 Methodology 265 // 12.3.1 Waviness Modeling 265 // 12.3.2 Nanocomposite: Closed-Form Analytical // Solution 265 // 12.3.3 Conventional Composite: Multiscale Micromechanics 267 // 12.3.4 Progressive Failure Analysis (PFA) 267 // 12.3.5 Material Modeling Assumptions 268 // 12.4 Results and Discussion 270 // 12.4.1 Modulus Prediction/Test Validation of Control and Nanocomposite 270 //
12.4.1.1 Effect of weak interphase and agglomeration 271 // 12.4.2 Strength Property Prediction 272 // 12.4.2.1 Effect of weak interphase and // agglomeration 273 // 12.5 Conclusions 275 // 13 Dispersion of Nanoparticles in Polymers 279 // Ambrose C. Taylor and David J. Bray // 13.1 Nanocomposites 280 // 13.1.1 Introduction 280 // 13.1.2 Nanoparticle Reinforcement 281 // 13.2 Nanoparticle Types 282 // 13.2.1 Nanoparticle Definition 282 // 13.2.2 Equi-Axed Nanoparticles 283 // 13.2.3 Nanotubes and Nanofibres 283 // 13.2.4 Plate-Like Nanoparticles 284 // 13.2.5 Other Nanoparticles 285 // 13.3 Dispersing Nanoparticles 285 // 13.3.1 Introduction 285 // 13.3.2 Mixing 286 // 13.3.3 Sonication 288 // 13.3.4 Alignment 289 // 13.3.5 Re-agglomeration 289 // 13.4 The Effect of Dispersion on the Properties of Nanoparticle-Modified Polymers 290 // 13.4.1 Introduction 290 // 13.4.2 Mechanical Properties 291 // 13.4.3 Functional Properties 292 // 13.4.4 Electrical Properties 293 // 13.4.5 Fracture Energy 294 // 13.4.6 Fatigue Performance 295 // 13.5 Quantifying Dispersion 297 // 13.5.1 Introduction 297 // 13.5.2 Greyscale Method 298 // 13.5.3 Quadrat Method 300 // 13.5.4 Area Disorder 301 // 13.5.5 Discussion 305 // 13.6 Conclusions 307 // 14 Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites 319 // G. M. Odegord, T. C. Clancy, and T. 5. Gates // 14.1 Introduction 320 // 14.2 Materials 321 // 14.3 Molecular Structure 322 // 14.4 Elastic Constants 327 // 14.5 Micromechanics Models 328 // 14.5.1 Mori-Tanaka Model 328 // 14.5.2 Effective Interface Model 330 // 14.6 Results and Discussion 332 // 14.7 Summary and Conclusions 339 // 15 Predicting the Elastic Properties of CNF/Thermoset Polymer Composites Considering the Effect of Interphase and Fiber Waviness 343 // Masoud Rais-Rohani and Mohammad Rouhi // 15.1 Introduction 344 //
15.2 Modeling of Nanofiber Enhanced Matrix 345 // 15.2.1 Eshelby Solution 346 // 15.2.2 General Three-Dimensional Mori-Tanaka Homogenization Scheme 349 // 15.2.3 Quasi-Isotropic Approximation Method 352 // 15.3 Modeling of Nanofiber-Matrix Interphase 363 // 15.4 Modeling of Nanofiber Waviness 367 // 16 Part 1: Multiscale Nanocomposite Fatigue Life // Determination 375 // Kamran Nikbin and Anthony J. Kinloch // 16.1 Introduction 376 // 16.2 Experiment 378 // 16.3 Methodology 379 // 16.3.1 Nanocomposite: Closed-Form Analytical // Solution 379 // 16.3.2 Conventional Composite: Multiscale Micromechanics 381 // 16.3.3 Progressive Failure Analysis (PFA) 382 // 16.3.4 Fatigue S-N Curve 383 // 16.3.5 Stress-Strain Curve 384 // 16.3.6 Probabilistic Material Uncertainty Analysis 384 // 16.3.7 Material Modeling Assumptions 385 // 16.4 Results and Discussion 386 // 16.4.1 Static Property Prediction/Test Validation of Control and Nanocomposite 386 // 16.4.2 Fatigue Property Prediction and Test Validation 387 // 16.5 Material Uncertainty Analysis due to Manufacturing and Design Parameters on Fatigue Life 388 // 16.6 Conclusions 394 // 17 Part 2: Multiscale Nanocomposite Fatigue Life Determination 397 // Kamran Nikbin and Anthony J. Kinloch // 17.1 Introduction 398 // 17.2 Experiment 400 // 17.3 Methodology 402 // 17.4 Results and Discussion 403 // 17.4.1 Static Property Prediction/Test Validation of Control and Nanocomposite and GFRP 403 // 17.4.2 Fatigue Property Prediction and Test // Validation 405 // 17.4.3 Material Uncertainty Analysis due to Manufacturing and Design Parameters on Fatigue Life 408 // 17.5 Conclusions 417 // 18 Stress Analysis and Fracture in Nanolaminate Composites 421 // Christos C. Chomis // 18.1 Introduction 421 // 18.1.1 Nanocomposite Simulation Properties 423 // 18.1.2 Nanostresses and Nanofracture 434 // 18.2 Concluding Remarks 436 //
19 Probabilistic Simulation for Nanocomposite Fracture 439 // Christos C. Chamis // 19.1 Introduction 439 // 19.2 Fundamentals 440 // 19.3 Results and Discussion 445 // 19.4 Concluding Remarks 449 // 20 Material Characterization and Microstructural Assessment: Fatigue Curve S-N Development Using Fracture Mechanics 453 // Hamid Saghizadeh // 20.1 The Evolution of Structural Design: Aerospace // Structures 453 // 20.2 Engineering Structures: Microstructural // Assessment 455 // 20.3 Fundamental Behavior of Solids 455 // 20.4 Dependence on Materials Science 455 // 20.5 The Nature of Fracture: Macroscopic vs. // Microscopic 456 // 20.5.1 Macroscopic Scale 456 // 20.5.2 Microscopic Scale 457 // 20.6 Composites Contain Multiple Materials 457 // 20.7 Thermosetting Polymers Are Glassy Polymers 458 // 20.8 Deformation in a Polymer 459 // 20.9 Multiscale Modeling and Simulation 460 // 20.10 Multiscale Modeling (Linking Nano, Micro, / and Macro) 461 // 20.11 What Is the Future of Aerospace Materials? 463 // 20.12 The Bottom-Up Approach: Nanoscale to // Macroscale 463 // 20.13 Nanotube-Polymer Interface 465 // 20.14 Dispersion of Nanotubes (Improper Dispersion Can Initiate Defects) 465 // 20.15 To Understand Material Properties at Each Region of Length and Time Scales 466 // 20.16 Chemistry of the Interface (Functionalize) 466 // 20.17 Strong Interface Bonds between Nanoparticles and Resin: Failure Initiation 468 // 20.18 Bridging the Length and Time Scales (From Nano to Macro: The Coarse Grain Technique) 468 // 20.19 Summary and Conclusion 469 // 20.20 Final Objective 469 // 20.21 Final Summary and Conclusion 472 // 20.22 Overall and Concluding Summary 474 // Index 477
(OCoLC)982012738

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC