Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 21.08.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
Third edition.
Amsterdam ; Boston : William Andrew, an imprint of Elsevier, [2016]
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9780323354356 (ebook)
ISBN 0323354351 (ebook)
ISBN !9780323354011 (chyb.)
ISBN 0323354017
ISBN 9780323354011
Tištěná verze : Kurtz, Steven M. UHMWPE Biomaterials Handbook : Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices : Elsevier Science,c2015
Obsahuje bibliografické odkazy a rejstřík.
Cover; Title Page; Copyright Page; Dedication; Contents; List of Contributors; Foreword; 1 -- A Primer on UHMWPE; 1.1 -- Introduction; 1.2 -- What is a Polymer?; 1.3 -- What is Polyethylene?; 1.4 -- Crystallinity; 1.5 -- Thermal Transitions; 1.6 -- Overview of the Handbook; References; 2 -- From Ethylene Gas to UHMWPE Component: The Process of Producing Orthopedic Implants; 2.1 -- Introduction; 2.2 -- Polymerization: from Ethylene Gas to UHMWPE Powder; 2.2.1 -- GUR Resins; 2.2.2 -- 1900 Resins; 2.2.3 -- Molecular Weight; 2.2.4 -- GUR Versus 1900 Resin; 2.2.5 -- Calcium Stearate; 2.2.6 -- DSM Resin
2.3 -- Conversion: from UHMWPE Powder to Consolidated Form2.3.1 -- Compression Molding of UHMWPE; 2.3.2 -- Ram Extrusion of UHMWPE; 2.3.3 -- Hot Isostatic Pressing (HIP’ing) of ArCom" UHMWPE; 2.3.4 -- Direct Compression Molding of UHMWPE; 2.3.5 -- ArCom; 2.3.6 -- Properties of Extruded Versus Molded UHMWPE; 2.4 -- Machining: from Consolidated Form to Implant; 2.5 -- Conclusions; References; 3 -- Packaging and Sterilization of UHMWPE; 3.1 -- Introduction; 3.2 -- Gamma Sterilization in Air; 3.3 -- Gamma Sterilization in Oxygen Barrier Packaging; 3.4 -- Ethylene Oxide Gas Sterilization
3.5 -- Gas Plasma Sterilization3.6 -- The Torino Survey of Contemporary Orthopedic Packaging; 3.7 -- Shelf-Life of UHMWPE Components for Orthopedic Implants; 3.8 -- Overview of Current Trends; Acknowledgments; References; 4 -- The Origins of UHMWPE in Total Hip Arthroplasty; 4.1 -- Introduction and Timeline; 4.2 -- The Origins of a Gold Standard; 4.3 -- Charnley’s First Hip Arthroplasty Design with PTFE; 4.4 -- Implant Fixation with Pink Dental Acrylic Cement; 4.5 -- Interim Hip Arthroplasty Designs with PTFE; 4.6 -- Final Hip Arthroplasty Design with PTFE; 4.7 -- Implant Fabrication at Wrightington
4.8 -- The First Wear Tester4.9 -- Searching to Replace PTFE; 4.10 -- UHMWPE Arrives at Wrightington; 4.11 -- Implant Sterilization Procedures at Wrightington; 4.12 -- Overview; Acknowledgments; References; 5 -- The Clinical Performance of Historical and Conventional UHMWPE in Hip Replacements; 5.1 -- Introduction; 5.2 -- Joint Replacements do not Last Forever; 5.3 -- Range of Clinical Wear Performance in Cemented Acetabular Components; 5.4 -- Wear Versus Wear Rate of Hip Replacements; 5.5 -- Comparison of Wear Rates between Different Clinical Studies
5.6 -- Comparison of Wear Rates in Clinical and Retrieval Studies5.7 -- Current Methods for Measuring Clinical Wear in THA; 5.8 -- Range of Clinical Wear Performance in Modular Acetabular Components; 5.9 -- Conclusions; Acknowledgments; References; 6 -- The Clinical Performance of Highly Cross-linked UHMWPE in Hip Replacements; 6.1 -- Introduction; 6.2 -- What are First- and Second-Generation HXLPEs?; 6.2.1 -- Early Clinical Experience with HXLPE; 6.2.2 -- First-Generation HXLPE; 6.2.3 -- Second-Generation HXLPE; 6.3 -- Clinical Performance of First-Generation HXLPEs in THA
6.3.1 -- Systematic Review of Femoral Head Penetration Studies
Online resource; title from PDF title page (EBSCO, viewed September 22, 2015)
001483098
Contents // List of Contributors...xix // Foreword...xxiii // 1 A Primer on UHMWPE...1 // Steven M. Kurtz, PhD // 1.1 Introduction...1 // 1.2 What is a Polymer?...1 // 1.3 What is Polyethylene?...2 // 1.4 Crystallinity...3 // 1.5 Thermal Transitions...4 // 1.6 Overview of the Handbook...5 // References...6 // 2 From Ethylene Gas to UHMWPE Component: The Process of Producing Orthopedic Implants...7 // Steven M. Kurtz, PhD // 2.1 Introduction...7 // 2.2 Polymerization: from Ethylene Gas to UHMWPE Powder...7 // 2.3 Conversion: from UHMWPE Powder to Consolidated Form...12 // 2.4 Machining: from Consolidated Form to Implant...17 // 2.5 Conclusions...18 // References...18 // 3 Packaging and Sterilization of UHMWPE...21 // Steven M. Kurtz, PhD and Matthew Zagorski, MS, CPP // 3.1 Introduction...21 // 3.2 Gamma Sterilization in Air...22 // 3.3 Gamma Sterilization in Oxygen Barrier Packaging...24 // 3.4 Ethylene Oxide Gas Sterilization...25 // 3.5 Gas Plasma Sterilization...26 // 3.6 The Torino Survey of Contemporary Orthopedic Packaging...27 // 3.7 Shelf-Life of UHMWPE Components for Orthopedic Implants...29 // 3.8 Overview of Current Trends... 29 // Acknowledgments...30 // References...30 // 4 The Origins of UHMWPE in Total Hip Arthroplasty...33 // Steven M. Kurtz, PhD // 4.1 Introduction and Timeline...33 // 4.2 The Origins of a Gold Standard (1958-1982)...33 // 4.3 Charnley’s First Hip Arthroplasty Design with PTFE (1958)...34 // 4.4 Implant Fixation with Pink Dental Acrylic Cement
(1958-66)...35 // 4.5 Interim Hip Arthroplasty Designs with PTFE (1958-1960)...36 // 4.6 Final Hip Arthroplasty Design with PTFE (1960-1962)...36 // 4.7 Implant Fabrication at Wrightington...37 // 4.8 The First Wear Tester...38 // 4.9 Searching to Replace PTFE...39 // vii // viii // Contents // 4.10 UHMWPE Arrives at Wrightington...40 // 4.11 Implant Sterilization Procedures at Wrightington...40 // 4.12 Overview... 43 // Acknowledgments...43 // References... 43 // 5 The Clinical Performance of Historical and Conventional UHMWPE in Hip Replacements...45 // Steven M. Kurtz, PhD // 5.1 Introduction... 45 // 5.2 Joint Replacements do not Last Forever...45 // 5.3 Range of Clinical Wear Performance in Cemented Acetabular Components...47 // 5.4 Wear Versus Wear Rate of Hip Replacements...48 // 5.5 Comparison of Wear Rates between Different Clinical Studies...49 // 5.6 Comparison of Wear Rates in Clinical and Retrieval Studies...51 // 5.7 Current Methods for Measuring Clinical Wear in THA...52 // 5.8 Range of Clinical Wear Performance in Modular Acetabular Components...52 // 5.9 Conclusions... 53 // Acknowledgments... 53 // References... 54 // 6 The Clinical Performance of Highly Cross-linked UHMWPE in Hip Replacements...57 // Steven M. Kurtz, PhD and Jasmine D. Patel, PhD // 6.1 Introduction... 57 // 6.2 What are First- and Second-Generation HXLPEs?...57 // 6.3 Clinical Performance of First-Generation HXLPEs in THA...60 // 6.4 Clinical Performance of Second-Generation HXLPEs in THA...65
// 6.5 Summary... gg // Acknowledgments... 57 // References... 67 // 7 Contemporary Total Hip Arthroplasty: Alternative Bearings...72 // Steven M. Kurtz, PhD and Kevin Ong, PhD // 7.1 Introduction... 72 // 7.2 Metal-on-Metal (MOM) Alternative Hip Bearings...73 // 7.3 Ceramics in Hip Arthroplasty... 78 // 7.4 Noise and Squeaking from Hard-on-Hard Bearings...91 // 7.5 Polyether Ether Ketone (PEEK)... 92 // 7.6 Polycarbonate Urethane (PCU)...94 // 7.7 Summary... 95 // References... 95 // 8 The Origins and Adaptations of UHMWPE for Knee Replacements...106 // Steven M. Kurtz, PhD // 8.1 Introduction... 206 // 8.2 Frank Gunston and the Wrightington Connection to TKA...107 // 8.3 Polycentric Knee Arthroplasty... // 8.4 Unicondylar Polycentric Knee Arthroplasty...112 // Contents // ix // 8.5 Bicondylar Total Knee Arthroplasty...112 // 8.6 Patellofemoral Arthroplasty...118 // 8.7 UHMWPE with Metal Backing...119 // 8.8 Conclusions...120 // Acknowledgments...121 // References...121 // 9 The Clinical Performance of UHMWPE in Knee Replacements...123 // Steven M. Kurtz, PhD // 9.1 Introduction...123 // 9.2 Biomechanics of Total Knee Arthroplasty...123 // 9.3 Clinical Performance of UHMWPE in Knee Arthroplasty...129 // 9.4 Osteolysis and Wear in TKA...135 // 9.5 Summary...I41 // Acknowledgments...141 // References...141 // 10 Contemporary Total Knee Arthroplasty: Alternative Bearings...145 // Steven M. Kurtz, PhD // 10.1 Introduction...145 // 10.2 HXLPE in TKA...145 // 10.3 Ceramic Bearings
in TKA...149 // 10.4 Summary...1 1 // References... 1 1 // 11 The Clinical Performance of UHMWPE in Shoulder Replacements...154 // Stefan M. Gabriel, PhD, PE // 11.1 Introduction...154 // 11.2 The Shoulder Joint...154 // 11.3 Shoulder Replacement...154 // 11.4 Contemporary Total Shoulder Replacements...160 // 11.5 Clinical Performance of Total Shoulder Arthroplasty...165 // 11.6 Controversies in Shoulder Replacement...168 // 11.7 Future Directions in Total Shoulder Arthroplasty...121 // 11.8 Conclusions...122 // Acknowledgments...122 // References...122 // 12 The Clinical Performance of UHMWPE in Elbow Replacements...179 // Judd S. Day, PhD // 12.1 Introduction...129 // 12.2 Anatomy of the Elbow...129 // 12.3 Elbow Biomechanics...182 // 12.4 Implant Design...184 // 12.5 Osteolysis and Wear...191 // 12.6 Conclusions...193 // Acknowledgments...194 // References...194 // x Contents // 13 Applications of UHMWPE in Total Ankle Replacements...197 // Allyson lanuzzi, PhD and Chimba Mkandawire, PhD, CAISS // 13.1 Introduction... 197 // 13.2 Anatomy... 197 // 13.3 Ankle Biomechanics... 19g // 13.4 Total Ankle Replacement Design... 200 // 13.5 UHMWPE Loading and Wear in Total Ankle Replacements...210 // 13.6 Complications and Retrieval Analysis...212 // 13.7 Conclusions... 212 // Acknowledgments... 212 // References... 212 // 14 The Clinical Performance of UHMWPE in the Spine...217 // Marta L. Villarraga, PhD and Steven M. Kurtz, PhD // 14.1 Introduction... 217 // 14.2 The CHARITÉ Artificial
Disc... 218 // 14.3 Lumbar Disc Arthroplasty... 226 // 14.4 Cervical Disc Arthroplasty... 235 // 14.5 Wear and In Vivo Degradation of UHMWPE in the Spine...247 // 14.6 Alternatives to UHMWPE in Disc Replacement...252 // 14.7 Many Unanswered Questions Remain...253 // Acknowledgments... 253 // References... 253 // 15 Highly Cross-Linked and Melted UHMWPE...264 // Orhun K. Muratoglu, PhD and Charles R. Bragdon, PhD // 15.1 Introduction... 264 // 15.2 Radiation Cross-Linking... 265 // 15.3 Irradiation and Melting... 265 // 15.4 Effect of Radiation Dose, Melting, and Irradiation Temperature, on UHMWPE Properties...267 // 15.5 Effect of Cross-Linking on Fatigue Resistance...268 // 15.6 Optimum Radiation Dose... 268 // 15.7 Hip Simulator Data... 268 // 15.8 Knee Simulator Data... 269 // 15.9 Clinical Follow-Up Studies... 270 // 15.10 In Vivo Changes - Explants... 270 // 15.11 Conclusions... 271 // References... 271 // 16 Highly Cross-Linked and Annealed UHMWPE...274 // Michael T. Manley, FRSA, PhD // 16.1 Introduction... 274 // 16.2 Development of Duration Stabilized UHMWPE...274 // 16.3 Crossfire... 276 // 16.4 X3 - Sequentially Irradiated and Annealed UHMWPE...282 // 16.5 Conclusions... 289 // Acknowledgments... 289 // References... 289 // Contents x’ // 17 Vitamin E-Blended UHMWPE Biomaterials...293 // Steven M. Kurtz, PhD, Pierangiola Bracco, PhD, Luigi Costa, PhD, Ebru Oral, PhD and Orhun Muratoglu, PhD // 17.1 Introduction...293 // 17.2 Vitamin E as an Antioxidant for Polyolefins...294
// 17.3 Vitamin E Blends in Food Packaging...295 // 17.4 Vitamin E Studies from Japan...296 // 17.5 VITASUL and Vitamin E Studies from Austria...297 // 17.6 Vitamin E Studies from Italy...298 // 17.7 Vitamin E Blends and Thresholds for Oxidative Stability...299 // 17.8 Vitamin E Blends and Mechanical Behavior...301 // 17.9 Vitamin E Blends and Cross-Linking Efficiency...302 // 17.10 Warm Irradiation and Postirradiation Treatment of Vitamin E Blends...303 // 17.11 Conclusions...304 // Acknowledgment...304 // References...304 // 18 Highly Cross-Linked UHMWPE Doped with Vitamin E...307 // Ebru Oral, PhD and Orhun K. Muratoglu, PhD // 18.1 Introduction...307 // 18.2 Function of Vitamin E...307 // 18.3 Diffusion of Vitamin E in Cross-Linked UHMWPE...309 // 18.4 Wear...310 // 18.5 Mechanical and Fatigue Properties...312 // 18.6 Oxidative Stability...314 // 18.7 Biocompatibility...315 // 18.8 Conclusions and Future Prospects...320 // Acknowledgments...320 // References...320 // 19 Alternate Antioxidants for Orthopedic Devices...326 // Venkat Narayan, PhD // 19.1 Introduction...326 // 19.2 Historical Perspective... 328 // 19.3 Commercial Listing and Trade Names...331 // 19.4 Mechanistic Studies on Radical Stabilization...333 // 19.5 Oxidative Stability Studies...336 // 19.6 Material Property Characterization...337 // 19.7 Biocompatibility and Biological Response...339 // 19.8 Ionizing Radiation Effects on Antioxidants...345 // 19.9 Antioxidants in Food and Healthcare...346 // 19.10 Antioxidants
in Orthopedic Implants...346 // 19.11 Conclusions...348 // Acknowledgment...348 // References...348 // 20 Phospholipid Polymer Grafted Highly Cross-Linked UHMWPE...352 // Masayuki Kyomoto, PhD, Toru Moro, MD, PhD and Kazuhiko Ishihara, PhD // 20.1 Articular Cartilage...352 // 20.2 Surface Modification with Hydrophilic Polymer...354 // xii // Contents // 20.3 PMPC-Grafted Polyethylene for Artificial Hip Joints // 20.4 Future Perspectives... // Acknowledgments... // References... // 360 // 364 // 364 // 364 // 21 UHMWPE Matrix Composites... // José Antonio Puértolas, PhD and Steven M. Kurtz, PhD // 21.1 Introduction... // 21.2 CFR-UHMWPE Composite: Poly II... // 21.3 CNTs—UHMWPE Composites... // 21.4 Graphene—UHMWPE Composites... // 21.5 Other UHMWPE Matrix Composites for Orthopedic Bearings // 21.6 Polyethylene-HA Composites... // 21.7 Summary... // Acknowledgments... // References... // 369 // 369 // 369 // 371 // 380 // 386 // 387 // 388 388 388 // 22 UHMWPE Homocomposites and Fibers... // Ryan Siskey, MS, Harold Smelt, MS, Karlien Boon-Ceelen, PhD and Maria Persson, PhD // 22.1 Introduction... // 22.2 UHMWPE Homocomposites... // 22.3 UHMWPE Fibers...lZllllllllll’Z’Z’llll... // Acknowledgments... // References... // 398 // 398 // 398 // 401 // 409 // 409 // 23 UHMWPE-Hyaluronan Microcomposite Biomaterials... // Susan P James, PhD, Rachael (Kurkowski) Oldinski, PhD, Min Zhang, PhD and Herb Schwartz, PhD // 23.1 Introduction... // 23.2 Surface Modification of UHMWPE...
23.3 Polyurethanes and Hydrogels... // 23.4 Hyaluronan (HA)... // 23.5 Synthesis and Processing of UHMWPE—HA Microcomposites // 23.6 UHMWPE-HA... // 23.7 Cross-Linked UHMWPE-HA... // 23.8 Cross-Linked Compatibilized UHMWPE-HA... // 23.9 Chemical and Physical Characterization of UHMWPE-HA Biomaterials... // 23.10 UHMWPE-HA Composition... // 23.11 UHMWPE-HA Hydrophilicity... // 23.12 UHMWPE-HA Biostability... // 23.13 UHMWPE Crystallinity in UHMWPE-HA... // 23.14 Mechanical and Tribological Characterization of UHMWPE-HA Biomaterials // 23.15 Sterilization of UHMWPE-HA Biomaterials... // 23.16 Biocompatibility of UHMWPE-HA Biomaterials... // 23.17 Commercialization of UHMWPE-HA Biomaterials... // 23.18 Conclusions... // Acknowledgments... // References... // .412 // .412 // .413 // .413 // .416 // .416 // ,419 // 419 // 420 // 420 // 421 // 422 // 423 423 428 428 428 428 // 428 // 429 // Contents // xiii // 24 High Pressure Crystallized UHMWPEs...434 // Anuj Bellare, PhD and Steven M. Kurtz, PhD // 24.1 Introduction...434 // 24.2 Extended Chain Crystallization...434 // 24.3 Hylamer...439 // 24.4 Cross-Linking Followed by High Pressure Crystallization...443 // 24.5 High Pressure Crystallization Followed by Cross-Linking...443 // 24.6 Summary...444 // Acknowledgments...444 // References...444 // 25 Compendium of HXLPEs...449 // Steven M. Kurtz, PhD // 25.1 Introduction...449 // 25.2 AltrX...449 // 25.3 AOX...450 // 25.4 ArCom XL Polyethylene...451 // 25.5 Crossfire...452 // 25.6
Durasul...453 // 25.7 El Polyethylene...455 // 25.8 Longevity...456 // 25.9 Marathon...458 // 25.10 Prolong...459 // 25.11 Vivacit-E...460 // 25.12 X3...461 // 25.13 XLK...461 // 25.14 XLPE...462 // Acknowledgments...463 // References...463 // 26 Mechanisms of Cross-Linking, Oxidative Degradation, and Stabilization of UHMWPE...467 // Luigi Costa, PhD and Pierangiola Bracco, PhD // 26.1 Introduction...467 // 26.2 Mechanism of Macroradicals Formation During Irradiation...467 // 26.3 Mechanism of Cross-Linking...469 // 26.4 UHMWPE Oxidation...470 // 26.5 Critical Products of Oxidation Process - Macroradicals...472 // 26.6 Critical Products of the Oxidation Process: Oxidized Products...473 // 26.7 Stabilization UHMWPE...474 // 26.8 Consideration on Industrial Cross-Linking and Sterilization of Prosthetic Components...477 // 26.9 In Vivo Absorption of Lipids...482 // 26.10 Chemical Properties of Wear Debris...482 // Acknowledgments...483 // References...483 // 27 In Vivo Oxidation of UHMWPE...488 // Steven M. Kurtz, PhD and Ebru Oral, PhD // 27.1 Introduction... 488 // 27.2 Perspective of In Vivo Oxidation in the 1980s to the Present...488 // xiv // Contents // 27.3 Experimental Techniques for Studying In Vivo Oxidation...491 // 27.4 Clinical Significance of In Vivo Oxidation...495 // 27.5 Laboratory Simulation of In Vivo Oxidation...501 // 27.6 Summary and Conclusions...502 // Acknowledgments...502 // References...503 // 28 Pathophysiologic Reactions to UHMWPE Wear Particles...506
// Marla J. Steinbeck, MT(ASCP), PhD and Sai Y. Veruva, PhD Candidate // 28.1 Introduction...506 // 28.2 Rationale for Evaluating Tissue Responses...507 // 28.3 Immune System...507 // 28.4 Immunologic Responses to Joint Replacement UHMWPE Wear Debris...509 // 28.5 In Vitro and In Vivo Models Used to Study the Immune Response to UHMWPE Wear Debris...513 // 28.6 Inflammatory and Noninflammatory Histopathologic Changes in Periprosthetic Tissues // that Promote Heterotopic Ossification and/or Osteolysis...515 // 28.7 Current Considerations Based on More Recent Findings and Approaches to Tissue Analysis...517 // 28.8 Exacerbation of the Immune Response to Wear Debris as a Result of Subclinical Infection...517 // 28.9 HXLPE and Histopathophysiologic Changes in Periprosthetic // Hip Tissues from Implant Retrievals...518 // 28.10 Conclusions...520 // Acknowledgments...520 // References...520 // 29 Characterization of Physical, Chemical, and Mechanical Properties of UHMWPE...531 // Stephen Spiegelberg, PhD, Adam Kozak, BS and Gavin Braithwaite, PhD // 29.1 Introduction...531 // 29.2 What does the FDA Require?...531 // 29.3 Physical Property Characterization...532 // 29.4 Chemical Property Characterization...538 // 29.5 Mechanical Property Characterization...543 // 29.6 Antioxidant Measurements...549 // 29.7 Accelerated Aging...55O // 29.8 Wear Testing...55O // 29.9 Conclusions...55O // References...55O // 30 Wear Assessment of UHMWPE with Pin-on-Disc Testing...553 // Hani Haider, PhD and
Doruk Baykal, PhD // 30.1 Introduction...553 // 30.2 Considerations and Pitfalls for POD Testing of UHMWPE...553 // 30.3 Development of POD Testing...561 // 30.4 International Standardization of POD Testing (ASTM F732)...562 // References...576 // 31 Tribology of UHMWPE in the Hip...579 // Murat Ali, PhD, Mäzen Al-Hajjar, PhD and Louise M. Jennings, PhD // 31.1 Introduction...579 // 31.2 Tribology...580 // Contents // XV // 31.3 Hip Joint Simulators...581 // 31.4 Quantification of Wear and Surface Measurements... 583 // 31.5 International Standards...585 // 31.6 Clinical Validation of Hip Simulators...586 // 31.7 Summary...591 // References...592 // 32 Tribological Assessment of UHMWPE in the Knee...599 // Hani Haider, PhD // 32.1 Introduction...599 // 32.2 Testing UHMWPE within Whole TKR Systems...600 // 32.3 Considerations and Pitfalls in Knee Wear Testing of UHMWPE...621 // 32.4 Concluding Remarks and Future Directions in UHMWPE // and TKR Longevity Test Methods...628 // References...631 // 33 Characterization of UHMWPE Wear Particles...635 // Ashley A. Stratton-Powell, ? Sc (Hons), MSc and Joanne L Tipper, ? Sc (Hons), PhD // 33.1 Introduction...635 // 33.2 Rationale for Wear Particle Isolation...635 // 33.3 Delipidization of Samples...635 // 33.4 Alkali Digestion of Periprosthetic Tissues and Simulator Lubricants...636 // 33.5 Acid Digestion of Periprosthetic Tissues and Simulator Lubricants...637 // 33.6 Enzyme Digestion of Periprosthetic Tissues and Simulator // Lubricants...637
// 33.7 Silicon Wafer Display Protocol...637 // 33.8 Centrifugation of Samples...638 // 33.9 Filtering to Recover Particles...638 // 33.10 Polarised Light Microscopy of Tissue Samples...638 // 33.11 Scanning Electron Microscopy Analysis...639 // 33.12 Atomic Force Microscopy...640 // 33.13 Image Analysis of UHMWPE Wear Particles...640 // 33.14 Automated Particle Analysis...643 // 33.15 Standards...644 // 33.16 Particle Measurements (Size/Shape Descriptors)...645 // 33.17 Predicting Functional Biological Activity...646 // 33.18 Antioxidant Additives to UHMWPE...649 // 33.19 Conclusions...649 // Acknowledgments...650 // References...650 // 34 Clinical Surveillance of UHMWPE Using Radiographic Methods...654 // Charles R. Bragdon, PhD // 34.1 Introduction...654 // 34.2 Early Manual Methods for Radiographic Measurement...655 // 34.3 Radiostereometric Analysis...656 // 34.4 Non-RSA Methods...657 // 34.5 Other Factors to Consider...662 // References...663 // xvi // Contents // 35 ESR Insights into Macroradicals in UHMWPE... // Muhammad Shah Jahan, PhD // 35.1 Introduction... 668 // 35.2 Basic Principle of ESR... 668 // 35.3 Free Radicals in UHMWPE... 671 // 35.4 Long-Lived Radicals in UHMWPE...675 // 35.5 Intermediate Radicals in UHMWPE...682 // 35.6 Vitamin E-Doped UHMWPE...684 // 35.7 Application of ESR for Quantitative Measure of Free Radicals // in UHMWPE... 688 // Acknowledgments... 690 // References... 690 // 36 Fatigue and Fracture of UHMWPE...693 // Francisco J. Medei, PhD and
Jevan Furmanski, PhD // 36.1 Introduction... 693 // 36.2 Fatigue Resistance... 693 // 36.3 Fracture Resistance... 703 // References... 716 // 37 Development and Application of the Notched Tensile Test to UHMWPE...721 // Michael C. Sobieraj, MD, PhD and Clare M. Rimnac, PhD // 37A Introduction... 72i // 37.2 Overview of Notch Behavior... // 37.3 Part I: Monotonie Tension Studies...723 // 37.4 Part ?: Notched Fatigue Life Studies...731 // 37.5 Conclusions and Future Directions...734 // References... 736 // 38 Development and Application of the Small Punch Test to UHMWPE...739 // Avram A. Edidin, PhD // 38.1 Introduction... // 38.2 Overview and Metrics of the Small Punch Test...739 // 38.3 Accelerated and Natural Aging of UHMWPE...74 j // 38.4 In Vivo Changes in Mechanical Behavior of UHMWPE...743 // 38.5 Effect of Cross-linking on Mechanical Behavior and Wear...744 // 38.6 Shear Punch Testing of UHMWPE...746 // 38.7 Fatigue Punch Testing of UHMWPE...747 // 38.8 Conclusions... 75j // References... 751 // 39 Computer Modeling and Simulation of UHMWPE...753 // Anton E. Bowden, PhD, PE and Jorgen Bergstrom, PhD // 39.1 Introduction... 753 // 39.2 Overview of Available Modeling and Simulation Approaches...753 // 39.3 Characteristic Material Behavior of UHMWPE...754 // 39.4 Material Models for UHMWPE...75g // 39.5 Discussion... 769 // Acknowledgments... 77O // References... 77O // Contents xvii // 40 Nano- and Microindentation Testing of UHMWPE...772 // Jeremy L Gilbert, PhD and James
D. Wernle, PhD // 40.1 Introduction...772 // 40.2 Depth-Sensing Indentation Testing Methods...772 // 40.3 Indentation Tests on UHMWPE: Structure-Property Testing...775 // 40.4 Nanoscratch Single Asperity Wear Tests and Their Effects on Indentation Behavior...781 // 40.5 Conclusions...784 // Acknowledgment...784 // References...784 // 41 MicroCT Analysis of Wear and Damage in UHMWPE...786 // Daniel MacDonald, MS, Anton E. Bowden, PhD, PE and Steven M. Kurtz, PhD // 41.1 Introduction...786 // 41.2 MicroCT Scanning...786 // 41.3 Evaluation of Penetration in THA using Geometric Primitives...787 // 41.4 Evaluation of Penetration in Nonregularly Shaped Components...789 // 41.5 Assessing Subsurface Cracking using microCT...794 // 41.6 Using microCT to Visualize Third Body Wear...794 // 41.7 Conclusions...795 // Acknowledgments...795 // References...795 // Subject Index...797
(OCoLC)921843491

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC