Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 29.06.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2022
1 online resource (658 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030906733 (electronic bk.)
ISBN 9783030906726
Print version: Reynolds, Matthew P. Wheat Improvement Cham : Springer International Publishing AG,c2022 ISBN 9783030906726
4.2 Introduction -- 4.3 Data and Methods -- 4.4 Trends in Global Wheat Production.
2.4 Past Activities Associated with Greater Breeding Success and Efficiency -- 2.5 Some Future Considerations for Breeding -- 2.6 Organization and Funding of Wheat Breeding -- 2.7 Key Concepts -- References -- Chapter 3: Defining Target Wheat Breeding Environments -- 3.1 Learning Objectives -- 3.2 Introduction: Wheat Mega-environments in History and the Context of Global Wheat Breeding -- 3.3 Major Factors That Broadly Impact the Definition of Target Environments -- 3.3.1 Flowering Time: Photoperiod and Vernalization -- 3.3.2 Water Availability and Temperature -- 3.3.3 Diseases -- 3.4 Target Population of Environments -- 3.5 Multi-environmental Testing and Genotype-by-Environment Interactions -- 3.6 Example of TPE Definition -- 3.7 Key Concepts and Conclusions -- References -- Chapter 4: Global Trends in Wheat Production, Consumption and Trade -- 4.1 Learning Objectives ---
4.2 Introduction -- 4.3 Data and Methods -- 4.4 Trends in Global Wheat Production.
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- List of Figures -- List of Tables -- About the Editors and Contributors -- Editors -- Contributors -- Abbreviations -- Part I: Background -- Chapter 1: Wheat Improvement -- 1.1 Learning Objectives -- 1.2 Background on Crop Breeding -- 1.3 Crop Improvement in Pre-history -- 1.4 Breeding in the Industrial Age -- 1.5 Technologies That Have Impacted Crop Breeding in Recent Decades -- 1.6 Integration of Disciplines -- 1.7 Networking and Sharing -- 1.8 Choosing Crop Improvement Approaches -- 1.9 Main Objectives of the Textbook ’Wheat Improvement - Food Security in a Changing Climate’ -- 1.10 Key Concepts -- 1.11 Conclusions -- References -- Chapter 2: History of Wheat Breeding: A Personal View -- 2.1 Learning Objectives -- 2.2 Introduction -- 2.3 Past Wheat Improvement at the Farm Level and in the Breeders’ Plots ---
11.6.1 Integrating Quality in the Breeding Process -- 11.6.2 Bread -- 11.6.3 Noodles -- 11.6.4 Cookies -- 11.6.5 Pasta -- 11.6.6 Molecular Markers Useful to Select for the Above-Mentioned Traits -- 11.7 Key Concepts -- 11.8 Conclusions -- Further Reading -- Chapter 12: Nutritionally Enhanced Wheat for Food and Nutrition Security -- 12.1 Learning Objectives -- 12.2 Introduction -- 12.2.1 Improving Nutrition of Crops for Human Health -- 12.2.2 Importance of a Whole Grain Diet -- 12.2.3 Significance of Processing, Retention and Bioavailability on Nutritional Impact of Wheat -- 12.3 Crop Improvement for Nutritional Quality -- 12.3.1 Setting Breeding Target Levels -- 12.3.2 Genetic Diversity for Nutritional Quality Traits -- 12.3.3 Targeted Breeding Approach -- 12.3.4 Genetic Architecture and Association of Nutritional Quality Traits in Wheat ---
10.3.5 Integration of Genomic Technologies in a Broader Physiological Breeding Strategy -- 10.4 Examples of Integrating Physiological Breeding in Wheat Improvement Programs -- 10.4.1 Defining the Environment in Northwestern NSW -- 10.4.2 Establishing an Ideotype for Northwestern NSW -- 10.4.3 Breeding Method - Modified Pedigree -- 10.4.4 Breeding Method - Selected Bulk -- 10.4.5 Breeding Method - Genomic Selection -- 10.5 Key Concepts and Conclusions -- References -- Chapter 11: Wheat Quality -- 11.1 Learning Objectives -- 11.2 Introduction - What Is Wheat Quality? -- 11.3 Importance of Wheat Quality - Why We Need to Breed for It -- 11.4 Main Traits That Define Wheat Quality -- 11.4.1 Grain Hardness -- 11.4.2 Gluten -- 11.4.3 Color -- 11.4.4 Starch -- 11.5 Genetic Control of the Quality Traits and Environmental Effects -- 11.6 Breeding for Quality ---
14.5 Type of Varieties in Wheat and Classes of Quality Seed.
Chapter 8: Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability -- 8.1 Learning Objectives -- 8.2 Economic Importance, Historical Impacts, Status of Rust Diseases -- 8.2.1 Stem Rust -- 8.2.2 Stripe Rust -- 8.2.3 Leaf Rust -- 8.3 Global Rust Phenotyping Network - Critical Tool to Understand Host Resistance and Pathogenic Diversity on a Global Scale -- 8.4 International Research Networks in Mitigating the Threats of Emerging New Races-Early Detection, Forecasting and Prediction -- 8.5 Types of Resistance, Strategies to Deploy Different Resistance Mechanisms to Attain Resistance Durability -- 8.5.1 Race-Specific/Seedling Resistance -- 8.5.2 APR Genes Conferring Pleiotropic Effects -- 8.6 Enhancing Resistance Durability Through Breeding Success, Setbacks and Lessons Learnt -- 8.7 Integrating New Tools for Resistance Breeding Presents Opportunities for Wheat Improvement -- 8.8 Key Concepts -- 8.9 Conclusions -- References -- Chapter 9: Globally Important Non-rust Diseases of Wheat -- 9.1 Learning Objectives -- 9.2 Introduction -- 9.3 Spike Diseases -- 9.3.1 Fusarium Head Blight -- 9.3.2 Wheat Blast -- 9.3.3 Karnal Bunt -- 9.4 Leaf Spotting Diseases -- 9.4.1 Tan Spot -- 9.4.2 Septoria Nodorum Blotch -- 9.4.3 Spot Blotch -- 9.4.4 Septoria Tritici Blotch -- 9.5 Root Diseases -- 9.6 Key Concepts -- 9.7 Conclusions -- References -- Chapter 10: Abiotic Stresses -- 10.1 Learning Objectives -- 10.2 Introduction -- 10.2.1 Australia -- 10.2.2 North America -- 10.2.3 Europe -- 10.2.4 Russia and Ukraine -- 10.2.5 India -- 10.2.6 China -- 10.3 Breeding for Improved Adaptation to Water-Limited and Heat Stressed Environments -- 10.3.1 Relevant Breeding Targets -- 10.3.2 Meaningful Genetic Diversity -- 10.3.3 To Phenotype or Not? -- 10.3.4 Physiological Wheat Breeding.
11.6.1 Integrating Quality in the Breeding Process -- 11.6.2 Bread -- 11.6.3 Noodles -- 11.6.4 Cookies -- 11.6.5 Pasta -- 11.6.6 Molecular Markers Useful to Select for the Above-Mentioned Traits -- 11.7 Key Concepts -- 11.8 Conclusions -- Further Reading -- Chapter 12: Nutritionally Enhanced Wheat for Food and Nutrition Security -- 12.1 Learning Objectives -- 12.2 Introduction -- 12.2.1 Improving Nutrition of Crops for Human Health -- 12.2.2 Importance of a Whole Grain Diet -- 12.2.3 Significance of Processing, Retention and Bioavailability on Nutritional Impact of Wheat -- 12.3 Crop Improvement for Nutritional Quality -- 12.3.1 Setting Breeding Target Levels -- 12.3.2 Genetic Diversity for Nutritional Quality Traits -- 12.3.3 Targeted Breeding Approach -- 12.3.4 Genetic Architecture and Association of Nutritional Quality Traits in Wheat ---
12.3.5 Genetic Control of Nutritional Quality Traits -- 12.3.6 Agronomic Biofortification.
10.3.5 Integration of Genomic Technologies in a Broader Physiological Breeding Strategy -- 10.4 Examples of Integrating Physiological Breeding in Wheat Improvement Programs -- 10.4.1 Defining the Environment in Northwestern NSW -- 10.4.2 Establishing an Ideotype for Northwestern NSW -- 10.4.3 Breeding Method - Modified Pedigree -- 10.4.4 Breeding Method - Selected Bulk -- 10.4.5 Breeding Method - Genomic Selection -- 10.5 Key Concepts and Conclusions -- References -- Chapter 11: Wheat Quality -- 11.1 Learning Objectives -- 11.2 Introduction - What Is Wheat Quality? -- 11.3 Importance of Wheat Quality - Why We Need to Breed for It -- 11.4 Main Traits That Define Wheat Quality -- 11.4.1 Grain Hardness -- 11.4.2 Gluten -- 11.4.3 Color -- 11.4.4 Starch -- 11.5 Genetic Control of the Quality Traits and Environmental Effects -- 11.6 Breeding for Quality ---
12.3.7 Mainstreaming Nutritional Quality Traits in Wheat Breeding and Novel Approaches -- 12.3.8 Speed Breeding -- 12.3.9 Population Improvement -- 12.3.10 Genomic Selection -- 12.4 Product Development and Dissemination -- 12.4.1 Adoption and Commercialization of Biofortified Wheat -- 12.5 Key Concepts -- 12.6 Conclusions and Future Perspectives -- References -- Chapter 13: Experimental Design for Plant Improvement -- 13.1 Learning Objectives -- 13.2 Introduction -- 13.3 Fundamental Design Concepts -- 13.3.1 Definitions -- 13.3.2 Replication -- 13.3.3 Randomization -- 13.3.4 Blocking: Controlling for Variability -- 13.3.5 Pseudo-Replication -- 13.3.6 Orthogonality and Balance -- 13.3.7 Resolvability -- 13.3.8 Optimality Criterion -- 13.3.9 Model Notation -- 13.4 Classical Designs -- 13.4.1 Treatment Structures -- 13.4.2 Plot Structures -- 13.4.2.1 Randomized Complete Block Designs (RCBDs) -- 13.4.2.2 Alpha-Lattice Designs -- 13.4.2.3 Row-Column Designs -- 13.4.2.4 Latinized Designs -- 13.4.2.5 Split Plot Designs -- 13.4.2.6 Augmented Designs -- 13.5 Model-Based Designs -- 13.5.1 Statistical Models for Plant Improvement Experiments -- 13.5.1.1 Analysis of Variance (ANOVA) -- 13.5.1.2 Linear Mixed Model -- 13.5.2 Examples -- 13.5.2.1 Accounting for Extraneous Variation -- 13.5.2.2 Partially Replicated Designs -- 13.6 Summary -- 13.7 Key Concepts -- 13.8 Review Questions -- References -- Chapter 14: Seed Systems to Support Rapid Adoption of Improved Varieties in Wheat -- 14.1 Learning Objectives -- 14.2 Introduction: Need for Efficient Wheat Seed System and Issues That Affect Its Functioning -- 14.3 Importance of Quality Seed in Modern Agriculture -- 14.4 Systems of Deed Dissemination -- 14.4.1 Formal and Informal Seed Dissemination -- 14.4.2 Seed System in Developed Countries and UPOV -- 14.4.3 Pre-release Seed Multiplication.
14.5 Type of Varieties in Wheat and Classes of Quality Seed.
4.5 Trends in Global Wheat Consumption -- 4.6 Wheat Prices and Trade -- 4.7 Key Concepts -- 4.8 Conclusion -- References -- Part II: Delivering Improved Germplasm -- Chapter 5: Breeding Methods: Line Development -- 5.1 Learning Objectives -- 5.2 Introduction -- 5.3 Pedigree Breeding -- 5.4 Bulk and Composite Breeding -- 5.5 Single Seed Descent -- 5.6 Doubled-Haploids -- 5.7 Backcross Methods -- 5.8 Mutation Breeding -- 5.9 Multilines -- 5.10 Key Concepts -- 5.11 Conclusion -- References -- Chapter 6: Breeding Methods: Population Improvement and Selection Methods -- 6.1 Learning Objectives -- 6.2 Population Improvement -- 6.2.1 Evolutionary Breeding -- 6.2.2 Recurrent Selection -- 6.3 Selection Methods -- 6.3.1 Mass Selection Systems -- 6.3.2 Selection Based on Best Linear Unbiased Prediction (BLUP) -- 6.3.3 Marker-Assisted Selection -- 6.3.4 Genomic Selection -- 6.4 Key Concepts -- 6.5 Conclusions -- References -- Chapter 7: Achieving Genetic Gains in Practice -- 7.1 Learning Objectives -- 7.2 Introduction -- 7.3 Product Profile-Based Breeding -- 7.4 Parental Selection and Crossing Strategies -- 7.5 Early-Generation Advancement and Selection Strategies -- 7.6 Advancement Decisions for Elite Lines and Phenotyping Strategies -- 7.7 International Screening Nurseries and Yield Trials for Identifying Superior Lines from Multi-environment Phenotyping -- 7.8 Integration of Genomic Selection -- 7.9 Partnerships with National Programs for Variety Identification, Release, and Dissemination -- 7.10 Outlook to Further Accelerate Genetic Gain -- 7.10.1 ’Rapid Bulk Generation Advancement (RBGA) Scheme (Three-Year Breeding Cycle Time) -- 7.10.2 ’Rapid-Cycle Recurrent Selection (RCRS)’ Scheme (Two-Year Breeding Cycle Time) -- 7.11 Key Concepts -- 7.12 Conclusion -- References.
Chapter 8: Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability -- 8.1 Learning Objectives -- 8.2 Economic Importance, Historical Impacts, Status of Rust Diseases -- 8.2.1 Stem Rust -- 8.2.2 Stripe Rust -- 8.2.3 Leaf Rust -- 8.3 Global Rust Phenotyping Network - Critical Tool to Understand Host Resistance and Pathogenic Diversity on a Global Scale -- 8.4 International Research Networks in Mitigating the Threats of Emerging New Races-Early Detection, Forecasting and Prediction -- 8.5 Types of Resistance, Strategies to Deploy Different Resistance Mechanisms to Attain Resistance Durability -- 8.5.1 Race-Specific/Seedling Resistance -- 8.5.2 APR Genes Conferring Pleiotropic Effects -- 8.6 Enhancing Resistance Durability Through Breeding Success, Setbacks and Lessons Learnt -- 8.7 Integrating New Tools for Resistance Breeding Presents Opportunities for Wheat Improvement -- 8.8 Key Concepts -- 8.9 Conclusions -- References -- Chapter 9: Globally Important Non-rust Diseases of Wheat -- 9.1 Learning Objectives -- 9.2 Introduction -- 9.3 Spike Diseases -- 9.3.1 Fusarium Head Blight -- 9.3.2 Wheat Blast -- 9.3.3 Karnal Bunt -- 9.4 Leaf Spotting Diseases -- 9.4.1 Tan Spot -- 9.4.2 Septoria Nodorum Blotch -- 9.4.3 Spot Blotch -- 9.4.4 Septoria Tritici Blotch -- 9.5 Root Diseases -- 9.6 Key Concepts -- 9.7 Conclusions -- References -- Chapter 10: Abiotic Stresses -- 10.1 Learning Objectives -- 10.2 Introduction -- 10.2.1 Australia -- 10.2.2 North America -- 10.2.3 Europe -- 10.2.4 Russia and Ukraine -- 10.2.5 India -- 10.2.6 China -- 10.3 Breeding for Improved Adaptation to Water-Limited and Heat Stressed Environments -- 10.3.1 Relevant Breeding Targets -- 10.3.2 Meaningful Genetic Diversity -- 10.3.3 To Phenotype or Not? -- 10.3.4 Physiological Wheat Breeding.
001897050
express
(Au-PeEL)EBL6978259
(MiAaPQ)EBC6978259
(OCoLC)1327845421

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC