Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2022
1 online resource (394 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030958602 (electronic bk.)
ISBN 9783030958596
Communications and Control Engineering Ser.
Print version: Pillonetto, Gianluigi Regularized System Identification Cham : Springer International Publishing AG,c2022 ISBN 9783030958596
Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations and Notation -- Notation -- Abbreviations -- 1 Bias -- 1.1 The Stein Effect -- 1.1.1 The James-Stein Estimator -- 1.1.2 Extensions of the James-Stein Estimator -- 1.2 Ridge Regression -- 1.3 Further Topics and Advanced Reading -- 1.4 Appendix: Proof of Theorem 1.1 -- References -- 2 Classical System Identification -- 2.1 The State-of-the-Art Identification Setup -- 2.2 mathcalM: Model Structures -- 2.2.1 Linear Time-Invariant Models -- 2.2.2 Nonlinear Models -- 2.3 mathcalI: Identification Methods-Criteria -- 2.3.1 A Maximum Likelihood (ML) View -- 2.4 Asymptotic Properties of the Estimated Models -- 2.4.1 Bias and Variance -- 2.4.2 Properties of the PEM Estimate as Ntoinfty -- 2.4.3 Trade-Off Between Bias and Variance -- 2.5 X: Experiment Design -- 2.6 mathcalV: Model Validation -- 2.6.1 Falsifying Models: Residual Analysis -- 2.6.2 Comparing Different Models -- 2.6.3 Cross-Validation -- References -- 3 Regularization of Linear Regression Models -- 3.1 Linear Regression -- 3.2 The Least Squares Method -- 3.2.1 Fundamentals of the Least Squares Method -- 3.2.2 Mean Squared Error and Model Order Selection -- 3.3 Ill-Conditioning -- 3.3.1 Ill-Conditioned Least Squares Problems -- 3.3.2 Ill-Conditioning in System Identification -- 3.4 Regularized Least Squares with Quadratic Penalties -- 3.4.1 Making an Ill-Conditioned LS Problem Well Conditioned -- 3.4.2 Equivalent Degrees of Freedom -- 3.5 Regularization Tuning for Quadratic Penalties -- 3.5.1 Mean Squared Error and Expected Validation Error -- 3.5.2 Efficient Sample Reuse -- 3.5.3 Expected In-Sample Validation Error -- 3.6 Regularized Least Squares with Other Types of Regularizers -- 3.6.1 ell1-Norm Regularization -- 3.6.2 Nuclear Norm Regularization -- 3.7 Further Topics and Advanced Reading -- 3.8 Appendix.
3.8.1 Fundamentals of Linear Algebra -- 3.8.2 Proof of Lemma 3.1 -- 3.8.3 Derivation of Predicted Residual Error Sum of Squares (PRESS) -- 3.8.4 Proof of Theorem 3.7 -- 3.8.5 A Variant of the Expected In-Sample Validation Error and Its Unbiased Estimator -- References -- 4 Bayesian Interpretation of Regularization -- 4.1 Preliminaries -- 4.2 Incorporating Prior Knowledge via Bayesian Estimation -- 4.2.1 Multivariate Gaussian Variables -- 4.2.2 The Gaussian Case -- 4.2.3 The Linear Gaussian Model -- 4.2.4 Hierarchical Bayes: Hyperparameters -- 4.3 Bayesian Interpretation of the James-Stein Estimator -- 4.4 Full and Empirical Bayes Approaches -- 4.5 Improper Priors and the Bias Space -- 4.6 Maximum Entropy Priors -- 4.7 Model Approximation via Optimal Projection -- 4.8 Equivalent Degrees of Freedom -- 4.9 Bayesian Function Reconstruction -- 4.10 Markov Chain Monte Carlo Estimation -- 4.11 Model Selection Using Bayes Factors -- 4.12 Further Topics and Advanced Reading -- 4.13 Appendix -- 4.13.1 Proof of Theorem 4.1 -- 4.13.2 Proof of Theorem 4.2 -- 4.13.3 Proof of Lemma 4.1 -- 4.13.4 Proof of Theorem 4.3 -- 4.13.5 Proof of Theorem 4.6 -- 4.13.6 Proof of Proposition 4.3 -- 4.13.7 Proof of Theorem 4.8 -- References -- 5 Regularization for Linear System Identification -- 5.1 Preliminaries -- 5.2 MSE and Regularization -- 5.3 Optimal Regularization for FIR Models -- 5.4 Bayesian Formulation and BIBO Stability -- 5.5 Smoothness and Contractivity: Time- and Frequency-Domain Interpretations -- 5.5.1 Maximum Entropy Priors for Smoothness and Stability: From Splines to Dynamical Systems -- 5.6 Regularization and Basis Expansion -- 5.7 Hankel Nuclear Norm Regularization -- 5.8 Historical Overview -- 5.8.1 The Distributed Lag Estimator: Prior Means and Smoothing -- 5.8.2 Frequency-Domain Smoothing and Stability.
6.9.5 Proofs of Theorems 6.15 and 6.16 -- 6.9.6 Proof of Theorem 6.21 -- References -- 7 Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- 7.1 Regularized Linear System Identification in Reproducing Kernel Hilbert Spaces -- 7.1.1 Discrete-Time Case -- 7.1.2 Continuous-Time Case -- 7.1.3 More General Use of the Representer Theorem for Linear System Identification -- 7.1.4 Connection with Bayesian Estimation of Gaussian Processes -- 7.1.5 A Numerical Example -- 7.2 Kernel Tuning -- 7.2.1 Marginal Likelihood Maximization -- 7.2.2 Stein’s Unbiased Risk Estimator -- 7.2.3 Generalized Cross-Validation -- 7.3 Theory of Stable Reproducing Kernel Hilbert Spaces -- 7.3.1 Kernel Stability: Necessary and Sufficient Conditions -- 7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces in More General Lebesque Spaces -- 7.4 Further Insights into Stable Reproducing Kernel Hilbert Spaces -- 7.4.1 Inclusions Between Notable Kernel Classes -- 7.4.2 Spectral Decomposition of Stable Kernels -- 7.4.3 Mercer Representations of Stable Reproducing Kernel Hilbert Spaces and of Regularized Estimators -- 7.4.4 Necessary and Sufficient Stability Condition Using Kernel Eigenvectors and Eigenvalues -- 7.5 Minimax Properties of the Stable Spline Estimator -- 7.5.1 Data Generator and Minimax Optimality -- 7.5.2 Stable Spline Estimator -- 7.5.3 Bounds on the Estimation Error and Minimax Properties -- 7.6 Further Topics and Advanced Reading -- 7.7 Appendix -- 7.7.1 Derivation of the First-Order Stable Spline Norm -- 7.7.2 Proof of Proposition 7.1 -- 7.7.3 Proof of Theorem 7.5 -- 7.7.4 Proof of Theorem 7.7 -- 7.7.5 Proof of Theorem 7.9 -- References -- 8 Regularization for Nonlinear System Identification -- 8.1 Nonlinear System Identification -- 8.2 Kernel-Based Nonlinear System Identification.
5.8.3 Exponential Stability and Stochastic Embedding -- 5.9 Further Topics and Advanced Reading -- 5.10 Appendix -- 5.10.1 Optimal Kernel -- 5.10.2 Proof of Lemma 5.1 -- 5.10.3 Proof of Theorem 5.5 -- 5.10.4 Proof of Corollary 5.1 -- 5.10.5 Proof of Lemma 5.2 -- 5.10.6 Proof of Theorem 5.6 -- 5.10.7 Proof of Lemma 5.5 -- 5.10.8 Forward Representations of Stable-Splines Kernels -- References -- 6 Regularization in Reproducing Kernel Hilbert Spaces -- 6.1 Preliminaries -- 6.2 Reproducing Kernel Hilbert Spaces -- 6.2.1 Reproducing Kernel Hilbert Spaces Induced by Operations on Kernels -- 6.3 Spectral Representations of Reproducing Kernel Hilbert Spaces -- 6.3.1 More General Spectral Representation -- 6.4 Kernel-Based Regularized Estimation -- 6.4.1 Regularization in Reproducing Kernel Hilbert Spaces and the Representer Theorem -- 6.4.2 Representer Theorem Using Linear and Bounded Functionals -- 6.5 Regularization Networks and Support Vector Machines -- 6.5.1 Regularization Networks -- 6.5.2 Robust Regression via Huber Loss -- 6.5.3 Support Vector Regression -- 6.5.4 Support Vector Classification -- 6.6 Kernels Examples -- 6.6.1 Linear Kernels, Regularized Linear Regression and System Identification -- 6.6.2 Kernels Given by a Finite Number of Basis Functions -- 6.6.3 Feature Map and Feature Space -- 6.6.4 Polynomial Kernels -- 6.6.5 Translation Invariant and Radial Basis Kernels -- 6.6.6 Spline Kernels -- 6.6.7 The Bias Space and the Spline Estimator -- 6.7 Asymptotic Properties -- 6.7.1 The Regression Function/Optimal Predictor -- 6.7.2 Regularization Networks: Statistical Consistency -- 6.7.3 Connection with Statistical Learning Theory -- 6.8 Further Topics and Advanced Reading -- 6.9 Appendix -- 6.9.1 Fundamentals of Functional Analysis -- 6.9.2 Proof of Theorem 6.1 -- 6.9.3 Proof of Theorem 6.10 -- 6.9.4 Proof of Theorem 6.13.
8.2.1 Connection with Bayesian Estimation of Gaussian Random Fields -- 8.2.2 Kernel Tuning -- 8.3 Kernels for Nonlinear System Identification -- 8.3.1 A Numerical Example -- 8.3.2 Limitations of the Gaussian and Polynomial Kernel -- 8.3.3 Nonlinear Stable Spline Kernel -- 8.3.4 Numerical Example Revisited: Use of the Nonlinear Stable Spline Kernel -- 8.4 Explicit Regularization of Volterra Models -- 8.5 Other Examples of Regularization in Nonlinear System Identification -- 8.5.1 Neural Networks and Deep Learning Models -- 8.5.2 Static Nonlinearities and Gaussian Process (GP) -- 8.5.3 Block-Oriented Models -- 8.5.4 Hybrid Models -- 8.5.5 Sparsity and Variable Selection -- References -- 9 Numerical Experiments and Real World Cases -- 9.1 Identification of Discrete-Time Output Error Models -- 9.1.1 Monte Carlo Studies with a Fixed Output Error Model -- 9.1.2 Monte Carlo Studies with Different Output Error Models -- 9.1.3 Real Data: A Robot Arm -- 9.1.4 Real Data: A Hairdryer -- 9.2 Identification of ARMAX Models -- 9.2.1 Monte Carlo Experiment -- 9.2.2 Real Data: Temperature Prediction -- 9.3 Multi-task Learning and Population Approaches -- 9.3.1 Kernel-Based Multi-task Learning -- 9.3.2 Numerical Example: Real Pharmacokinetic Data -- References -- Appendix Index -- Index.
001897122
express
(Au-PeEL)EBL6986548
(MiAaPQ)EBC6986548
(OCoLC)1319038749

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC