Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 13.07.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
3rd ed.
New York : Springer, c2006
xxvi, 954 s. : il., grafy ; 29 cm + 1 CD-ROM

objednat
ISBN 0-387-31278-1 (váz.)
Bibliografické odkazy, rejstřík
000013326
1. Introduction to Fluorescence // 1.1. Phenomena of Fluorescence // 1.2. Jablonski Diagram // 1.3. Characteristics of Fluorescence Emission // 1.4. Fluorescence Lifetimes and Quantum Yields // 1.5. Fluorescence Anisotropy // 1.6. Resonance Energy Transfer // 1.7. Steady-State and Time-Resolved Fluorescence // 1.8. Biochemical Fluorophores // 1.8.1. Fluorescent Indicators // 1.9. Molecular Information from Fluorescence // 1.10. Biochemical Examples of Basic Phenomena // 1.11. New Fluorescence Technologies // 1.12. Overview of Fluorescence Spectroscopy // 2. Instrumentation for Fluorescence Spectroscopy // 2.1. Spectrofluorometers // 2.2. Light Sources 31 // 2.3. Monochromators 34 // 2.4. Optical Filters 38 // 2.5. Optical Filters and Signal Purity 41 // 2.6. Photomultiplier Tubes 44 // 2.7. Polarizers 49 // 2.8. Corrected Excitation Spectra 51 // 2.9. Corrected Emission Spectra 52 // 2.10. Quantum Yield Standards // 2.11. Effects of Sample Geometry // 2.12. Common Errors in Sample Preparation // 2.13. Absorption of Light and Deviation from the Beer-Lambert Law // 2.14. Conclusions // 3. Fluorophores // 3.1. Intrinsic or Natural Fluorophores // 3.2. Extrinsic Fluorophores // 3.3. Red and Near-Infrared (NIR) Dyes // 3.4. DNA Probes // 3.5. Chemical Sensing Probes // 3.6. Special Probes // 3.7. Green Fluorescent Proteins // 3.8. Other Fluorescent Proteins // 3.9. Long-Lifetime Probes // 3.10. Proteins as Sensors // 3.11. Conclusion // 4. Time-Domain Lifetime Measurements // 4.1. Overview of Time-Domain and Frequency-Domain Measurements // 4.2. Biopolymers Display Multi-Exponential or Heterogeneous Decays 101 // 4.3. Time-Correlated Single-Photon Counting 103 // 4.4. Light Sources for TCSPC 107 // 4.5. Electronics for TCSPC 114 // 4.6. Detectors for TCSPC 117 // 4.7. Multi-Detector and Multidimensional TCSPC 121 // 4.8. Alternative Methods for Time-Resolved Measurements 124 //
4.9. Data Analysis: Nonlinear Least Squares 129 // 4.10. Analysis of Multi-Exponential Decays 133 // 4.11. Intensity Decay Laws 141 // 4.12. Global Analysis 144 // 4.13. Applications of TCSPC 145 // 4.14. Data Analysis: Maximum Entropy Method 148 // 5. Frequency-Domain Lifetime Measurements // 5.1. Theory of Frequency-Domain Fluorometry 158 // 5.2. Frequency-Domain Instrumentation 163 // 5.3. Color Effects and Background Fluorescence 168 // 5.4. Representative Frequency-Domain Intensity Decays 170 // 5.5. Simple Frequency-Domain Instruments 173 // 5.6. Gigahertz Frequency-Domain Fluorometry 175 // 5.7. Analysis of Frequency-Domain Data 178 // 5.8. Biochemical Examples of Frequency-Domain Intensity Decays 186 // 5.9. Phase-Angle and Modulation Spectra 189 // 5.10. Apparent Phase and Modulation Lifetimes 191 // 5.11. Derivation of the Equations for PhaseModulation Fluorescence 192 // 5.12. Phase-Sensitive Emission Spectra 194 // 5.13. Phase-Modulation Resolution of Emission Spectra 197 // 6. Solvent and Environmental Effects // 6.1. Overview of Solvent Polarity Effects 205 // 6.2. General Solvent Effects: The Lippert-Mataga Equation 208 // 6.3. Specific Solvent Effects 213 // 6.4. Temperature Effects 216 // 6.5. Phase Transitions in Membranes 217 // 6.6. Additional Factors that Affect Emission Spectra 219 // 6.7. Effects of Viscosity 223 // 6.8. Probe-Probe Interactions 225 // 6.9. Biochemical Applications of EnvironmentSensitive Fluorophores 226 // 6.10. Advanced Solvent-Sensitive Probes 228 // 6.11. Effects of Solvent Mixtures 229 // 6.12. Summary of Solvent Effects 231 // 7. Dynamics of Solvent and Spectral Relaxation // 7.1. Overview of Excited-State Processes 237 // 7.2. Measurement of Time-Resolved Emission Spectra (TRES) 240 // 7.3. Spectral Relaxation in Proteins 242 // 7.4. Spectral Relaxation in Membranes 245 // 7.5. Picosecond Relaxation in Solvents 249 //
7.6. Measurement of Multi-Exponential Spectral Relaxation 252 // 7.7. Distinction between Solvent Relaxation and Formation of Rotational Isomers 253 // 7.8. Comparison of TRES and Decay-Associated / Spectra 255 // 7.9. Lifetime-Resolved Emission Spectra 255 // 7.10. Red-Edge Excitation Shifts 257 // 7.11. Excited-State Reactions 259 // 7.12. Theory for a Reversible Two-State Reaction 262 // 7.13. Time-Domain Studies of Naphthol Dissociation.. 264 // 7.14. Analysis of Excited-State Reactions by Phase-Modulation Fluorometry 265 // 7.15. Biochemical Examples of Excited-State Reactions 270 // 8. Quenching of Fluorescence // 8.1. Quenchers of Fluorescence 278 // 8.2. Theory of Collisional Quenching 278 // 8.3. Theory of Static Quenching 282 // 8.4. Combined Dynamic and Static Quenching 282 // 8.5. Examples of Static and Dynamic Quenching 283 // 8.6. Deviations from the Stem-Volmer Equation: Quenching Sphere of Action 284 // 8.7. Effects of Steric Shielding and Charge on Quenching 286 // 8.8. Fractional Accessibility to Quenchers 288 // 8.9. Applications of Quenching to Proteins 290 // 8.10. Application of Quenching to Membranes 293 // 8.11. Lateral Diffusion in Membranes 300 // 8.12. Quenching-Resolved Emission Spectra 301 // 8.13. Quenching and Association Reactions 304 // 8.14. Sensing Applications of Quenching 305 // 8.15. Applications of Quenching to Molecular Biology 310 // 8.16. Quenching on Gold Surfaces 313 // 8.17. Intramolecular Quenching 314 // 8.18. Quenching of Phosphorescence 317 // 9. Mechanisms and Dynamics of Fluorescence Quenching // 9.1. Comparison of Quenching and Resonance Energy Transfer 331 // 9.2. Mechanisms of Quenching 334 // 9.3. Energetics of Photoinduced Electron Transfer 336 // 9.4. PET Quenching in Biomolecules 341 // 9.5. Single-Molecule PET 342 // 9.6. Transient Effects in Quenching 343 // 10. Fluorescence Anisotropy //
10.1. Definition of Fluorescence Anisotropy 353 // 10.2. Theory for Anisotropy 355 // 10.3. Excitation Anisotropy Spectra 358 // 10.4. Measurement of Fluorescence Anisotropies 361 // 10.5. Effects of Rotational Diffusion on Fluorescence / Anisotropies: The Perrin Equation // 10.6. Perrin Plots of Proteins // 10.7. Biochemical Applications of Steady-State Anisotropies // 10.8. Anisotropy of Membranes and Membrane-Bound Proteins // 10.9. Transition Moments // 11. Time-Dependent Anisotropy Decays // 11.1. Time-Domain and Frequency-Domain Anisotropy Decays // 11.2. Anisotropy Decay Analysis // 11.3. Analysis of Frequency-Domain Anisotropy Decays // 11.4. Anisotropy Decay Laws // 11.5. Time-Domain Anisotropy Decays of Proteins // 11.6. Frequency-Domain Anisotropy Decays of Proteins // 11.7. Hindered Rotational Diffusion in Membranes // 11.8. Anisotropy Decays of Nucleic Acids // 11.9. Correlation Time Imaging // 11.10. Microsecond Anisotropy Decays // 12. Advanced Anisotropy Concepts // 12.1. Associated Anisotropy Decay // 12.2. Biochemical Examples of Associated Anisotropy Decays // 12.3. Rotational Diffusion of Non-Spherical Molecules: An Overview // 12.4. Ellipsoids of Revolution // 12.5. Complete Theory for Rotational Diffusion of Ellipsoids 425 // 12.6. Anisotropic Rotational Diffusion 426 // / 12.7. Global Anisotropy Decay Analysis 429 // 12.8. Intercalated Fluorophores in DNA 432 // 12.9. Transition Moments 433 // 12.10. Lifetime-Resolved Anisotropies 435 // 12.11. Soleillet’s Rule: Multiplication of Depolarized Factors 436 // 12.12. Anisotropies Can Depend on Emission Wavelength 437 // 13. Energy Transfer // 13.1. Characteristics of Resonance Energy Transfer 443 // 13.2. Theory of Energy Transfer for a Donor-Acceptor Pair 445 // 13.3. Distance Measurements Using RET 451 // 13.4. Biochemical Applications of RET 453 // 13.5. RET Sensors 458 //
13.6. RET and Nucleic Acids 459 // 13.7. Energy-Transfer Efficiency from Enhanced Acceptor Fluorescence 461 // 13.8. Energy Transfer in Membranes 462 // 13.9. Effect of ?2 on RET 465 // 13.10. Energy Transfer in Solution 466 // 13.11. Representative R0 Values 467 // 14. Time-Resolved Energy Transfer and Conformational Distributions of Biopolymers // 14.1. Distance Distributions 477 // 14.2. Distance Distributions in Peptides 479 // 14.3. Distance Distributions in Peptides 482 // 14.3.1. Distance Distributions in Melittin 483 // 14.4. Distance-Distribution Data Analysis 485 // 14.5. Biochemical Applications of Distance Distributions 490 // 14.6. Time-Resolved RET Imaging 497 // 14.7. Effect of Diffusion for Linked D-A Pairs 498 // 14.8. Conclusion 501 // I5. Energy Transfer to Multiple Acceptors in One,Two, or Three Dimensions // 15.1. RET in Three Dimensions 507 // 15.2. Effect of Dimensionality on RET 511 // 15.3. Biochemical Applications of RET with // Multiple Acceptors 515 // 15.4. Energy Transfer in Restricted Geometries 516 // 15.5. RET in the Presence of Diffusion 519 // 15.6. RET in the Rapid Diffusion Limit 520 // 15.7. Conclusions 524 // 16. Protein Fluorescence // 16.1. Spectral Properties of the Aromatic Amino Acids 530 // 16.2. General Features of Protein Fluorescence 535 // 16.3. Tryptophan Emission in an Apolar Protein Environment 538 // 16.4. Energy Transfer and Intrinsic Protein Fluorescence 539 // 16.5. Calcium Binding to Calmodulin Using Phenylalanine and Tyrosine Emission 545 // 16.6. Quenching of Tryptophan Residues in Proteins.. 546 // 16.7. Association Reaction of Proteins 551 // 16.8. Spectral Properties of Genetically Engineered Proteins 554 // 16.9. Protein Folding 557 // 16.10. Protein Structure and Tryptophan Emission 560 // 16.11. Tryptophan Analogues 562 // 16.12. The Challenge of Protein Fluorescence 566 //
17. Time-Resolved Protein Fluorescence // 17.1. Intensity Decays of Tryptophan: The Rotamer Model 578 // 17.2. Time-Resolved Intensity Decays of Tryptophan and Tyrosine 580 // 17.3. Intensity and Anisotropy Decays of Proteins 583 // 17.4. Protein Unfolding Exposes the Tryptophan Residue to Water 588 // 17.5. Anisotropy Decays of Proteins 589 // 17.6. Biochemical Examples Using Time-Resolved Protein Fluorescence 591 // 17.7. Time-Dependent Spectral Relaxation of Tryptophan 596 // 17.8. Phosphorescence of Proteins 598 // 17.9. Perspectives on Protein Fluorescence 600 // 18. Multiphoton Excitation and Microscopy // 18.1. Introduction to Multiphoton Excitation 607 // 18.2. Cross-Sections for Multiphoton Absorption 609 // 18.3. Two-Photon Absorption Spectra 609 // 18.4. Two-Photon Excitation of a DNA-Bound Fluorophore 610 // 18.5. Anisotropies with Multiphoton Excitation 612 // 18.6. MPE for a Membrane-Bound Fluorophore 613 // 18.7. MPE of Intrinsic Protein Fluorescence 613 // 18.8. Multiphoton Microscopy 616 // 19. Fluorescence Sensing // 19.1. Optical Clinical Chemistry and Spectral // Observables 623 // 19.2. Spectral Observables for Fluorescence Sensing 624 // 19.3. Mechanisms of Sensing 626 // 19.4. Sensing by Collisional Quenching 627 // 19.5. Energy-Transfer Sensing 633 // 19.6. Two-State pH Sensors 637 // 19.7. Photoinduced Electron Transfer (PET) Probes for Metal Ions and Anion Sensors 641 // 19.8. Probes of Analyte Recognition 643 // 19.9. Glucose-Sensitive Fluorophores 650 // 19.10. Protein Sensors 651 // 19.11. GFP Sensors 654 // 19.12. New Approaches to Sensing 655 // 19.13. In-Vivo Imaging 656 // 19.14. Immunoassays 658 // 20. Novel Fluorophores // 20.1. Semiconductor Nanoparticles 675 // 20.2. Lanthanides 679 // 20.3. Long-Lifetime Metal-Ligand Complexes 683 // 20.4. Long-Wavelength Long-Lifetime Fluorophores 695 // 21. DNA Technology // 21.1. DNA Sequencing 705 //
21.2. High-Sensitivity DNA Stains 712 // 21.3. DNA Hybridization 715 // 21.4. Molecular Beacons 720 // 21.5. Aptamers 724 // 21.6. Multiplexed Microbead Arrays: Suspension Arrays 726 // 21.7. Fluorescence In-Situ Hybridization 727 // 21.8. Multicolor FISH and Spectral Karyotyping 730 // 21.9. DNA Arrays 732 // 22. Fluorescence-Lifetime Imaging Microscopy // 22.1. Early Methods for Fluorescence-Lifetime Imaging 743 // 22.2. Lifetime Imaging of Calcium Using Quin-2 744 // 22.3. Examples of Wide-Field Frequency-Domain FLIM 746 // 22.4. Wide-Field FLIM Using a Gated-Image Intensifier 747 // 22.5. Laser Scanning TCSPC FLIM 748 // 22.6. Frequency-Domain Laser Scanning Microscopy // 22.7. Conclusions // 23. Single-Molecule Detection // 23.1. Detectability of Single Molecules // 23.2. Total Internal Reflection and Confocal Optics. // 23.3. Optical Configurations for SMD // 23.4. Instrumentation for SMD // 23.5. Single-Molecule Photophysics // 23.6. Biochemical Applications of SMD // 23.7. Single-Molecule Resonance Energy Transfer // 23.8. Single-Molecule Orientation and Rotational Motions // 23.9. Time-Resolved Studies of Single Molecules // 23.10. Biochemical Applications // 23.11. Advanced Topics in SMD // 23.12. Additional Literature on SMD // 24. Fluorescence Correlation Spectroscopy // 24.1. Principles of Fluorescence Correlation Spectroscopy // 24.2. Theory of FCS 800 // 24.3. Examples of FCS Experiments 805 // 24.4. Applications of FCS to Bioaffinity Reactions.. 807 // 24.5. FCS in Two Dimensions: Membranes 810 // 24.6. Effects of Intersystem Crossing 815 // 24.7. Effects of Chemical Reactions 816 // 24.8. Fluorescence Intensity Distribution Analysis.. 817 // 24.9. Time-Resolved FCS 819 // 24.10. Detection of Conformational Dynamics // in Macromolecules 820 // 24.11. FCS with Total Internal Reflection 821 // 24.12. FCS with Two-Photon Excitation 822 //
24.13. Dual-Color Fluorescence Cross-Correlation Spectroscopy 823 // 2 24.14. Rotational Diffusion and Photo Antibunching.. 828 // 24.15. Flow Measurements Using FCS 830 // 24.16. Additional References on FCS 832 // 25. Radiative Decay Engineering: Metal-Enhanced Fluorescence // 25.1. Radiative Decay Engineering 841 // 25.2. Review of Metal Effects on Fluorescence 843 // 25.3. Optical Properties of Metal Colloids // 25.4. Theory for Fluorophore—Colloid Interactions // 25.5. Experimental Results on Metal-Enhanced // Fluorescence // 25.6. Distance-Dependence of Metal-Enhanced // Fluorescence // 25.7. Applications of Metal-Enhanced Fluorescence. // 25.8. Mechanism of MEF // 25.9. Perspective on RET // 26. Radiative Decay Engineering: Surface Plasmon-Coupled Emission // 26.1. Phenomenon of SPCE // 26.2. Surface-Plasmon Resonance // 26.3. Expected Properties of SPCE // 26.4. Experimental Demonstration of SPCE // 26.5. Applications of SPCE // 26.6. Future Developments in SPCE // Appendix I. Corrected Emission Spectra // 1. Emission Spectra Standards from 300 to 800 nm // 2. ß-Carboline Derivatives as Fluorescence Standards // 3. Corrected Emission Spectra of 9,10-Diphenyl-anthracene, Quinine, and Fluorescein // 4. Long-Wavelength Standards // 5. Ultraviolet Standards // 6. Additional Corrected Emission Spectra // References // Appendix II. Fluorescent Lifetime Standards // 1. Nanosecond Lifetime Standards // 2. Picosecond Lifetime Standards // 3. Representative Frequency-Domain // Intensity Decays // 4. Time-Domain Lifetime Standards // Appendix III. Additional Reading // 1. Time-Resolved Measurements.. 2. Spectra Properties of Fluorophores 3. Theory of Fluorescence and Photophysics 4. Reviews of Fluorescence Spectroscopy 5. Biochemical Fluorescence 6. Protein Fluorescence 7. Data Analysis and Nonlinear Least Squares 8. Photochemistry.. 889 // 9. Flow Cytometry //
10. Phosphorescence // 11. Fluorescence Sensing // 12. Immunoassays // 13. Applications of Fluorescence // 14. Multiphoton Excitation // 15. Infrared and NIR Fluorescence // 16. Lasers // 17. Fluorescence Microscopy // 18. Metal-Ligand Complexes and Unusual // Lumophores // 19. Single-Molecule Detection // 20. Fluorescence Correlation Spectroscopy 892 // 21. Biophotonics // 22. Nanoparticles om // 23. Metalhc Particles om // 24. Books on Fluorescence // Answers to Problems // Index

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC