Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 20.11.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
1. vyd.
Brno : Masarykova univerzita, 2007
vii, 317 s. : il. ; 30 cm

objednat
ISBN 978-80-210-4228-5 (brož.)
Nad názvem: Masaryk University, Faculty of Medicine
Obsahuje tabulky
000134297
1 Biophysics and its importance for medicine (I. Hrazdira) 1 // 2 The structure of living matter (V. Mornstein) 3 // 2.1 A recapitulation of quantum and nuclear physics 3 // 2.1.1 The sub-molecular structure of matter 3 // 2.1.1.1 The four fundamental interactions 3 // 2.1.1.2 Elementary particles of matter 4 // 2.1.1.3 The quantum properties of particles and their consequences 5 // 2.1.2 General properties of atoms 7 // 2.1.2.1 The electron shell of the atom 7 // 2.1.2.2 The atomic nucleus and its properties 10 // 2.1.3 Radioactivity and ionizing radiation 12 // 2.1.3.1 Radioactive decay types 12 // 2.1.3.2 The laws of radioactive decay 14 // 2.1.3.3 Interaction of ionizing radiation with matter 16 // 2.1.4 Units used to measure ionizing radiation 20 // 2.2 An introduction to molecular biophysics 21 // 2.2.1 Physico-chemical properties of molecules and their structure 21 // 2.2.1.1 Strong interactions between atoms - chemical bonds 21 // 2.2.1.2 Weak chemical interactions 23 // 2.2.1.3 Cohesive forces and liquid viscosity 24 // 2.2.2 Basic properties of water 25 // 2.2.2.1 Water and its properties 25 // 2.2.22 The function of water in organisms 26 // 2.2.3 Biopolymers and their structure 27 // 2.2.3.1 Structure of nucleic acids 27 // 2.2.3.2 Protein structures and their modifications 28 // 2.2.3.3 Overview of the methods of studying biopolymer structures 31 // 2.2.4 Dispersion systems and their properties 33 // 2.2.4.1 Types of dispersion systems 33 // 2.2.4.2 Colloidal dispersions and their physical properties 35 // 2.2.4.3 Methods of analyzing colloids and some macroheterogeneous systems 36 // 3 An introduction to thermodynamics and bioenergetics (V. Mornstein) 40 // 3.1 Basic concepts and laws of equilibrium thermodynamics 40 // 3.1.1 Basic properties of thermodynamic systems 40 // 3.1.2 Work of the thermodynamic system. Temperature and heat 41 //
3.1.3 Equations of state and basic processes in gases 43 // 3.1.4 The laws of thermodynamics 45 // 3.1.5 Thermodynamic potentials 47 // 3.1.6 Chemical potential 49 // 3.1.7 Chemical equilibrium and chemical work 50 // 3.2 Interpretation of some theoretical aspects of statistical physics 52 // 3.3 Application of the theoretical aspects of thermodynamics 56 // 3.3.1 Osmotic pressure 56 // 3.3.2 Phases of matter and phase equilibria 58 // 3.3.3 Surface and adsorption phenomena 62 // 3.3.4 Galvanic cell 64 // 3.3.5 Resting membrane voltage (potential) 66 // 3.3.5.1 The Nemst equation for resting membrane voltage 66 // 3.3.5.2. Donnan’s equilibrium 68 // 3.4 An outline of the thermodynamics of living systems 69 // 3.4.1 Entropy production and the stationary state 69 // IH3.4.2 Examples of non-equilibrium thermodynamic processes 71 // 3.4.2.1 Diffusion 71 // 3.4.2.2. The Goldman equation (resting membrane voltage) 72 // 3.4.3 Nonlinear thermodynamics and dissipative structures 73 // 3.5 Energetic processes in living systems 75 // 3.5.1 Sources and conversions of energy in living systems 76 // 3.5.2 Energy consumption in living systems 77 // 4 Mechanical properties of living systems (I. Hrazdira and J. Škorpíková) 79 // 4.1 Basic concepts of mechanics 79 // 4.1.1 Mechanics of solids (J. Škorpíková) 79 // 4.1.2 Biomechanics 82 // 4.1.3 Classification of substances by mechanical properties 83 // 4.2 Structure and mechanical properties of cells 84 // 4.2.1 Structure of eukaryotic cells 84 // 4.2.2 Static mechanical properties 85 // 4.2.3 Dynamic properties 86 // 4.3 Mechanical properties of multi-cellular systems 88 // 4.3.1 Mechanical properties of teeth 88 // 4.3.2 Mechanical properties of the supportive-locomotor system 88 // 4.3.2.1 Statics and kinematics of bones and joints 88 // 4.3.2.2 Biomechanics of muscle contraction 90 //
4.3.3 Biomechanics of the cardiovascular system 91 // 4.3.3.1 Heart as a pump 91 // 4.3.3.2 Physical laws of flow 92 // 4.3.3.3 Blood flow 93 // 4.3.3.4 Mechanical properties of blood vessels 95 // 4.3.3.5 Blood flow in capillaries 97 // 4.3.3.6 Mechanical properties of blood 98 // 4.3.4 Biomechanics of breathing 98 // 4.3.4.1 Mechanics of breathing 98 // 4.3.4.2 Breathing resistance 99 // 4.3.4.3 Respiratory volumes and capacities 100 // 4.3.4.4 Mechanism of gas exchange between external and internal environment 101 // 4.3.5 Human voice and its properties 102 // 4.3.5.1 Origin of human voice 102 // 4.3.5.2 Acoustic composition of human speech 102 // 4.3.6 Biophysics of the urinary system 103 // 4.3.6.1 Glomerular filtration 104 // 4.3.6.2 Biophysical functions of the tubules 105 // 4.3.7 Biomechanics of the digestive system 105 // 5 Electrical phenomena and living systems (I. Hrazdira, V. Mornstein and J. Škorpíková) 108 // 5.1 Basic concepts and principles of electricity (J. Škorpíková) 108 // 5.1.1 Electric field 108 // 5.1.2 Electric current 110 // 5.1.3 Work and electric power of constant current 112 // 5.1.4 Magnetic field 112 // 5.2 Electrical phenomena in cells (V. Mornstein) 113 // 5.2.1 Resting membrane potential (voltage) 113 // 5.2.1.1 Measurement of the membrane potential 114 // 5.2.2.2 Origin of the action potential 115 // 5.2.3 Propagation of the action potential 116 // 5.2.4 Synaptic transfer of the action potential 117 // 5.2.4.1 Basic function of the synapse 117 // 5.2.4.2 Excitatory and inhibitory synapses 118 // 5.2.4.3 Summation of postsynaptic potentials and the origin of the action potential 119 // 5.2.5 Modelling electric properties of the cell membrane 119 // 5.3 Electric properties of tissues (I. Hrazdira) 120 // 5.3.1 Conduction of electric current through tissues 120 // 5.3.2 Electrical excitability 121 //
5.3.3 Passive electric properties 123 // 6 General characteristics of sensory perception (I. Hrazdira) 125 // 6.1 Sensory receptor classification 125 // 6.2 The transducing function of sensory receptors 126 // 6.3 The biophysical relationship between stimulus and sensation 127 // 6.4 The biophysics of perceiving chemical impulses 128 // 6.5 The structure and function of smell and taste receptors 129 // 7 The biophysics of perception of acoustic stimuli (I. Hrazdira) 131 // 7.1 The basic concepts of acoustics 131 // 7.2 Loudness, hearing field 132 // 7.3 The biophysical function of the ear 133 // 7.3.1 The mechanism of conveying acoustic signals 133 // 7.3.2 The mechanism of receiving and analyzing acoustic signals 135 // 7.3.3 Electrical phenomena related to sound reception 137 // 7.4 The biophysical function of the vestibular apparatus 138 // 7.5 Correction of hearing deficiency 139 // 7.5.1 The physical principles of examining hearing deficiencies 139 // 7.5.2 The principles for correcting hearing deficiencies 140 // 8 Reception and processing of optical stimuli (I. Hrazdira and J. Škorpíková) 141 // 8.1 Light - physical properties and sources (J. Skorpíková) 141 // 8.2 Optical properties of the eye 146 // 8.2.1 The structure of the eyeball and the optical properties of its media 146 // 8.2.2 Accommodation 148 // 8.2.3 Spherical ametropia 149 // 8.2.4 Aspherical ametropia 150 // 8.3 The mechanism of perceiving light stimuli 150 // 8.3.1 Structure of the retina 150 // 8.3.2 Vision 152 // 8.3.3 Colour vision and its disorders 154 // 8.3.4 Electrical phenomena in the retina 156 // 8.4 Correction of the distortions of the optical system of the eye 157 // 8.4.1 Glasses 157 // 8.4.2 Contact lenses 158 // 8.4.3 Artificial intraocular lens 159 // 8.4.4 Retinal implants 159 // 9 The impact of physical
factors on living systems (I. Hrazdira) 161 // 9.1 The impact of mechanical factors 161 // 9.1.1 The impact of pressure changes 161 // 9.1.2 The impact of velocity changes 162 // 9.1.3 The impact of mechanical forces 163 // 9.2 The impact of acoustic factors 164 // 9.2.1 The impact of sound fields 164 // 9.2.2 Effects of ultrasound 165 // 9.3 The impact of meteorological conditions on the organism 166 // 9.4 Effects of electric currents 168 // 9.4.1 Electric current conduction through tissues 169 // 9.4.2 Electric shocks 169 // 9.5 Effects of magnetic fields 170 // 9.6 Effects of non-ionizing electromagnetic radiation 172 // 9.6.1 Physical characteristics of visible radiation. Laser light. 172 // 9.6.2 Biological effects of optical radiation 174 // 9.7 Biological effects of ionizing radiation 176 // 9.7.1 Mechanisms of the effects 176 // 9.7.2 Biological effects of nuclear explosions 178 // v9.7.3 Protection against ionizing radiation 179 // 10 The human organism as a source of information (I. Hrazdira) 180 // 10.1 Biosignals and their classification 180 // 10.2 Biosignal processing 181 // 11 Measuring and recording diagnostic methods (I. Hrazdira and V. Mornstein) 183 // 11.1 Detection and measurement of mechanical quantities (V. Mornstein) 183 // 11.1.1 Pressure measurement (tonometry) 183 // 11.1.1.1 The transducers 183 // 11.1.1.2 Blood pressure 184 // 11.1.1.3 Other methods of pressure measurement in medicine 185 // 11.1.2 Measurement of mechanical work and power 185 // 11.1.3 Measurement of mechanical properties of liquids 186 // 11.1.4 Detection of low-frequency mechanical vibrations and sounds 187 // 11.2 Temperature measurement (I. Hrazdira) 187 // 11.2.1 Contact thermometric methods 188 // 11.2.1.1 Thermal volume expansion of liquids 188 // 11.2.1.2 Thermal expansion of metals 188 // 11.2.1.3 Changes in electrical properties of materials 188 //
11.2.2 Contactless temperature measurement 189 // 11.3 Electrodiagnostic methods (I. Hrazdira) 190 // 11.3.1 Electrodes 190 // 11.3.2 Processing of electrical signals 191 // 11.3.3 Detecting electrodiagnostic methods 192 // 11.3.3.1 Electrocardiography (EKG) 192 // 11.3.3.2 Electromyography (EMG) 195 // 11.3.3.3 Electroencephalography (EEG) 196 // 11.3.3.4 Electroretinography (ERG) 197 // 11.3.3.5 Diagnostic value of magnetic signals 197 // 11.3.4 Stimulating electrodiagnostic methods 198 // 11.4 Electrochemical analytical methods (V. Mornstein) 199 // 11.4.1 Main kinds of electrodes 199 // 11.4.2 Conductometry 201 // 11.4.3 Polarography and voltammetry 202 // 11.5 Optical laboratory methods (V. Mornstein) 203 // 11.5.1 Spectrophotometry 203 // 11.5.2 Polarimetry 205 // 11.5.3 Refractometry 206 // 11.6 Methods of microscopy (V. Mornstein) 208 // 11.6.1 Light microscopy 209 // 11.6.1.1 Scheme of a compound light microscope and properties of its optical system 209 // 11.6.1.2 Different kinds of compound microscopes 211 // 11.6.1.3 Special optical microscopes 212 // 11.6.1.4 Optical scanning microscopes 213 // 11.6.2 Electron microscopy 215 // 11.6.2.1 Transmission electron microscopy 216 // 11.6.2.2 Scanning electron microscopy (SEM) 216 // 11.6.3 Acoustic microscopy 217 // 11.7 Bone densitometry (I. Hrazdira) 217 // 11.7.1 X-ray densitometry 217 // 11.7.2 Ultrasound densitometry 218 // 11.8 Detection and dosimetry of ionising radiation (V. Mornstein) 218 // 11.8.1 Chemical and photochemical detectors and dosimeters 218 // 11.8.2 Electrical (ionisation) methods 219 // 11.8.3 Scintillation counters 222 // 11.9 Monitoring and telemetry (V. Mornstein) 223 // 12 Imaging diagnostic methods (I. Hrazdira and V. Mornstein) 225 // VI12.1 General principles of diagnostic imaging (I. Hrazdira) 225 // 12.1.1 Algorithm of the imaging process 225 //
12.1.2 Assessment of image quality 225 // 12.2 Thermography (I. Hrazdira) 226 // 12.2.1 Contact thermography 226 // 12.2.2 The contactless thermography 227 // 12.2.3 Diagnostic importance of thermography 227 // 12.3 Ultrasound imaging and Doppler methods (I. Hrazdira) 228 // 12.3.1 Theoretical basis 228 // 12.3.2 The mechanism of ultrasound imaging 229 // 12.3.3 Doppler diagnostic methods 231 // 12.3.4 Ultrasound echo-contrast agents 233 // 12.3.5 Safety of ultrasound diagnostic procedures 234 // 12.3.6 Clinical value of ultrasonography 234 // 12.4 Endoscopic methods (I. Hrazdira) 235 // 12.4.1 Endoscopic mirrors 235 // 12.4.2 Endoscopes with rigid tubes 236 // 12.4.3 Fibre-optic endoscopes 236 // 12.5 X-ray imaging methods (V. Mornstein) 237 // 12.5.1 Principal scheme of an X-ray instrument 238 // 12.5.2 Origin of the X-ray image 239 // 12.5.2.1 Course of X-rays 239 // 12.5.2.2 Unsharpness of the image 240 // 12.5.2.3 Usage of contrast agents 241 // 12.5.3 The most important methods in X-ray diagnostics 241 // 12.5.3.1 Image intensifier 242 // 12.5.3.2 X-ray apparatuses used in dentistry 243 // 12.5.3.3 Xeroradiography 243 // 12.5.3.4 Classical (layer) tomography 243 // 12.5.4 Computed tomography (CT) 244 // 12.6 Radionuclide imaging and other diagnostic methods (V. Mornstein) 245 // 12.6.1 Tracing and radioimmunoassay 246 // 12.6.2 Scintillation counters and rectilinear scanners 246 // 12.6.3 Anger gamma-camera 247 // 12.6.4 SPECTandPET 247 // 12.7 Magnetic resonance imaging (V. Mornstein) 249 // 12.7.1 Nuclear magnetic resonance 249 // 12.7.2 The principle of image formation 251 // 12.7.3 Clinical value of MRI 253 // 13 Biophysical basis of non-invasive therapeutic methods (I. Hrazdira) 255 // 13.1 Therapy by means of mechanical energy 255 // 13.1.1 Ultrasound therapy 255 // 13.1.2 Lithotripsy by shock waves 255 // 13.1.3 Shock wave therapy 257 //
13.2 Electrotherapy 257 // 13.2.1 Applications of direct current (DC) 257 // 13.2.2 Applications of alternating current (AC) and electric impulses 258 // 13.3 Principles of magnetotherapy 260 // 13.3.1 Magnetic fields and their interaction with living systems 260 // 13.3.2 Main components of therapeutic effect of magnetic field 261 // 13.4 Methods of thermotherapy 261 // 13.4.1 Methods based on heat transfer 262 // 13.4.2 Methods based on heat production inside the body 263 // 13.5 Visible light as a therapeutic tool 264 // 13.5.1 Therapy with laser radiation 264 // 13.5.2 Therapy by polarised light 266 // 13.5.3 Photodynamic therapy 266 // VII13.5.4 Therapeutic sources of ultraviolet radiation 267 // 13.6 Physical principles of radiotherapy 268 // 13.6.1 Basic phenomena 268 // 13.6.2. Sources of ionising radiation used in radiotherapy 268 // 13.6.3 Methods of radiotherapy 269 // 14 Biophysical basis of invasive therapeutic methods (I. Hrazdira) 271 // 14.1 Physical principles of modern surgical instruments 271 // 14.1.1 Electrosurgery 271 // 14.1.2 Lasers in surgery instrumentation 271 // 14.1.3 Ultrasound surgery 272 // 14.1.4 Cryosurgery 273 // 14.1.5 Water jet as a surgical tool 273 // 14.2 Equipment assisting or replacing organ functions 273 // 14.2.1 Breathing assist devices 274 // 14.2.2 Heart assist devices and artificial heart 274 // 14.2.3 Haemodialyser - an artificial kidney 275 // 14.2.4 Limb prostheses 276 // 14.2.5 Infusion pumps 277 // 15 Notes on biophysical principles and instrumentation in dental medicine (I. Hrazdira) 279 // 15.1 Mechanical properties of teeth 279 // 15.2 Biocompatibility of materials used in dental medicine 279 // 15.2.1 General features of biocompatibility 279 // 15.2.2 Problems of biocompatibility in dental medicine 280 // 15.2.3 Basic characteristic of materials for dental prostheses 281 //
15.3 X-ray devices in dentistry 284 // 15.4 Measurement of electrical excitabUity of dental pulp 285 // 15.5 Physical principles of main tools used in dentistry 285 // 15.5.1 Rotary instruments 286 // 15.5.2 Lever tools 287 // 15.5.3 Ultrasound devices in dental medicine 288 // 15.6 Dental prostheses (dentures) 290 // 16 Healthcare informatics and overview of computer-literacy for medical students (A. Bouřek) 292 // 16.1 Informatics as a science 292 // 16.2 The computer as a device for data sharing 294 // 16.3 Networks 305 // 16.4 Information technology (processes and tools) applied in health and healthcare 310 // 16.4.1 Health, healthcare, medical informatics and telemedicine 310 // 16.4.2 Searching for health and healthcare related evidence based documents using the World Wide Web (WWW) 313

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC