Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 12.11.2022. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
3rd ed.
London : Imperial College Press, c2009
xiii, 608 s. : il. ; 25 cm

objednat
ISBN 978-1-84816-242-6 (váz.) ISBN !1-84816-242-1 (chyb.)
Obsahuje bibliografii na s. 565-597 a rejstřík
000176619
Preface vii // 1. Introduction 1 // 1.1 Preliminary Remarks 1 // 1.2 Structure of the Book 2 // 2. Controller Architecture 4 // 2.1 Introduction 4 // 2.2 Comments on the PID Controller Structures 11 // 2.3 Process Modelling 12 // 2.3.1 Self-regulating process models 12 // 2.3.2 Non-self-regulating process models 14 // 2.4 Organisation of the Tuning Rules 16 // 3. Controller Tuning Rules for Self-Regulating Process Models 18 // 3.1 Delay Model 18 // 3.1.1 Ideal PI controller - Table 2 18 // 3.1.2 Ideal PID controller-Table 3 23 // 3.1.3 Ideal controller in series with a first order lag - Table 4 24 // 3.1.4 Classical controller-Table 5 25 // 3.1.5 Generalised classical controller - Table 6 26 // 3.1.6 Two degree of freedom controller 1 - Table 7 27 // 3.2 Delay Model with a Zero 28 // 3.2.1 Ideal PI controller - Table 8 28 // 3.3 FOLPD Model 30 // 3.3.1 Ideal PI controller - Table 9 30 // 3.3.2 Ideal PID controller-Table 10 78 // 3.3.3 Ideal controller in series with a first order lag - Table 11 118 // 3.3.4 Controller with filtered derivative - Table 12 122 // 3.3.5 Classical controller-Table 13 134 // 3.3.6 Generalised classical controller - Table 14 149 // 3.3.7 Two degree of freedom controller 1 - Table 15 152 // 3.3.8 Two degree of freedom controller 2 - Table 16 168 // 3.3.9 Two degree of freedom controller 3 - Table 17 170 // Handbook of PI and PID Controller Tuning Rules // 3.4 FOLPD Model with a Zero 180 // 3.4.1 Ideal PI controller - Table 18 180 // 3.4.2 Ideal controller in series with a first order lag - Table 19 182 // 3.5 SOSPD Model 183 // 3.5.1 Ideal PI controller-Table 20 183 // 3.5.2 Ideal PID controller - Table 21 206 // 3.5.3 Ideal controller in series with a first order lag - Table 22 232 // 3.5.4 Controller with filtered derivative - Table 23 236 // 3.5.5 Classical controller - Table 24 238 // 3.5.6 Generalised classical controller - Table 25 251 //
3.5.7 Two degree of freedom controller 1 - Table 26 253 // 3.5.8 Two degree of freedom controller 3 - Table 27 264 // 3.6 SOSPD Model with a Zero 277 // 3.6.1 Ideal PI controller - Table 28 277 // 3.6.2 Ideal PID controller - Table 29 279 // 3.6.3 Ideal controller in series with a first order lag - Table 30 282 // 3.6.4 Controller with filtered derivative - Table 31 284 // 3.6.5 Classical controller-Table 32 286 // 3.6.6 Generalised classical controller - Table 33 288 // 3.6.7 Two degree of freedom controller 1 - Table 34 289 // 3.6.8 Two degree of freedom controller 3 - Table 35 292 // 3.7 TOSPD Model 293 // 3.7.1 Ideal PI controller - Table 36 293 // 3.7.2 Ideal PID controller - Table 37 296 // 3.7.3 Ideal controller in series with a first order lag-Table 38 297 // 3.7.4 Controller with filtered derivative - Table 39 298 // 3.7.5 Two degree of freedom controller 1 - Table 40 299 // 3.7.6 Two degree of freedom controller 3 - Table 41 302 // 3.8 Fifth Order System Plus Delay Model 303 // 3.8.1 Ideal PID controller-Table 42 303 // 3.8.2 Controller with filtered derivative - Table 43 305 // 3.8.3 Two degree of freedom controller 1 - Table 44 308 // 3.9 General Model ?? // 3.9.1 Ideal PI controller-Table 45 310 // 3.9.2 Ideal PID controller - Table 46 312 // 3.9.3 Ideal controller in series with a first order lag - Table 47 315 // 3.9.4 Controller with filtered derivative - Table 48 316 // 3.9.5 Two degree of freedom controller 1 - Table 49 317 // 3.10 Non-Model Specific 318 // 3.10.1 Ideal PI controller-Table 50 318 // 3.10.2 Ideal PID controller - Table 51 324 // 3.10.3 Ideal controller in series with a first order lag- Table 52 332 // 3.10.4 Controller with filtered derivative - Table 53 336 // 3.10.5 Classical controller-Table 54 341 // 3.10.6 Generalised classical controller - Table 55 343 // 3.10.7 Two degree of freedom controller 1 - Table 56 346 //
3.10.8 Two degree of freedom controller 3 - Table 57 349 // 4. Controller Tuning Rules for Non-Self-Regulating Process Models 350 // 4.1 IPD Model 350 // 4.1.1 Ideal PI controller - Table 58 350 // 4.1.2 Ideal PID controller-Table 59 359 // 4.1.3 Ideal controller in series with a first order lag - Table 60 364 // 4.1.4 Controller with filtered derivative - Table 61 366 // 4.1.5 Classical controller-Table 62 368 // 4.1.6 Generalised classical controller-Table 63 371 // 4.1.7 Two degree of freedom controller 1 - Table 64 372 // 4.1.8 Two degree of freedom controller 2 - Table 65 378 // 4.1.9 Two degree of freedom controller 3 - Table 66 381 // 4.2 IPD Model with a Zero 383 // 4.2.1 Ideal PI controller - Table 67 383 // 4.3 FOLIPD Model 385 // 4.3.1 Ideal PI controller-Table 68 385 // 4.3.2 Ideal PID controller-Table 69 388 // 4.3.3 Ideal controller in series with a first order lag - Table 70 392 // 4.3.4 Controller with filtered derivative - Table 71 394 // 4.3.5 Classical controller-Table 72 395 // 4.3.6 Generalised classical controller - Table 73 397 // 4.3.7 Two degree of freedom controller 1 - Table 74 399 // 4.3.8 Two degree of freedom controller 2 - Table 75 416 // 4.3.9 Two degree of freedom controller 3 - Table 76 418 // 4.4 FOLIPD Model with a Zero 420 // 4.4.1 Ideal PID controller - Table 77 420 // 4.4.2 Ideal controller in series with a first order lag - Table 78 422 // 4.4.3 Classical controller-Table 79 423 // 4.5 I2PD Model 424 // 4.5.1 Ideal PID controller - Table 80 424 // 4.5.2 Classical controller-Table 81 425 // 4.5.3 Two degree of freedom controller 1 - Table 82 426 // 4.5.4 Two degree of freedom controller 2 - Table 83 427 // 4.5.5 Two degree of freedom controller 3 - Table 84 429 // 4.6 SOSIPD Model 430 // 4.6.1 Ideal PI controller - Table 85 430 // 4.6.2 Two degree of freedom controller 1 - Table 86 431 // 4.7 SOSIPD Model with a Zero 436 //
4.7.1 Classical controller-Table 87 436 // 4.8 TOSIPD Model 437 // 4.8.1 Two degree of freedom controller 1 - Table 88 437 // Handbook of PI and PID Controller Tuning Rules // xii // 4.9 General Model with Integrator 438 // 4.9.1 Ideal PI controller - Table 89 438 // 4.9.2 Two degree of freedom controller 1 - Table 90 439 // 4.10 Unstable FOLPD Model 440 // 4.10.1 Ideal PI controller - Table 91 440 // 4.10.2 Ideal PID controller-Table 92 447 // 4.10.3 Ideal controller in series with a first order lag - Table 93 455 // 4.10.4 Classical controller-Table 94 458 // 4.10.5 Generalised classical controller - Table 95 462 // 4.10.6 Two degree of freedom controller 1 - Table 96 463 // 4.10.7 Two degree of freedom controller 2 - Table 97 473 // 4.10.8 Two degree of freedom controller 3 - Table 98 475 // 4.11 Unstable FOLPD Model with a Zero 480 // 4.11.1 Ideal PI controller - Table 99 480 // 4.11.2 Ideal controller in series with a first order lag - Table 100 481 // 4.11.3 Generalised classical controller-Table 101 483 // 4.11.4 Two degree of freedom controller 1 - Table 102 484 // 4.12 Unstable SOSPD Model (one unstable pole) 486 // 4.12.1 Ideal PI controller-Table 103 486 // 4.12.2 Ideal PID controller - Table 104 488 // 4.12.3 Ideal controller in series with a first order lag - Table 105 490 // 4.12.4 Classical controller-Table 106 491 // 4.12.5 Two degree of freedom controller 1 - Table 107 497 // 4.12.6 Two degree of freedom controller 3 - Table 108 503 // 4.13 Unstable SOSPD Model (two unstable poles) 506 // 4.13.1 Ideal PID controller-Table 109 506 // 4.13.2 Generalised classical controller - Table 110 508 // 4.13.3 Two degree of freedom controller 2 - Table 111 509 // 4.14 Unstable SOSPD Model with a Zero 511 // 4.14.1 Ideal PI controller - Table 112 511 // 4.14.2 Ideal controller in series with a first order lag - Table 113 513 //
4.14.3 Generalised classical controller-Table 114 516 // 4.14.4 Two degree of freedom controller 1 - Table 115 518 // 4.14.5 Two degree of freedom controller 3 - Table 116 520 // 5. Performance and Robustness Issues in the Compensation of FOLPD // Processes with PI and PID Controllers 521 // 5.1 Introduction 521 // 5.2 The Analytical Determination of Gain and Phase Margin 522 // 5.2.1 PI tuning formulae 522 // 5.2.2 PID tuning formulae 525 // 5.3 The Analytical Determination of Maximum Sensitivity 529 // 5.4 Simulation Results 529 // Contents xii i // 5.5 Design of Tuning Rules to Achieve Constant Gain and Phase Margins, // for All Values of Delay 534 // 5.5.1 PI controller design 534 // 5.5.1.1 Processes modelled in FOLPD form 534 // 5.5.1.2 Processes modelled in IPD form 536 // 5.5.2 PID controller design 539 // 5.5.2.1 Processes modelled in FOLPD form - classical controller 539 // 5.5.2.2 Processes modelled in SOSPD form - series controller 541 // 5.5.2.3 Processes modelled in SOSPD form with a negative // zero - classical controller 542 // 5.5.3 PD controller design 542 // 5.6 Conclusions 543 // Appendix 1 Glossary of Symbols and Abbreviations 544 // Appendix 2 Some Further Details on Process Modelling 551 // Bibliography 565 // Index 599

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC