Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 05.06.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Global Edition
Hoboken : Wiley, [2018]
xix, 692 stran : ilustrace ; 24 cm

objednat
ISBN 978-1-119-45416-8 (brožováno)
Obsahuje rejstřík
001640084
Chapter 1: crystal structure 1 // Periodic Arrays of Atoms 3 // Lattice Translation Vectors 4 // Basis and the Crystal Structure 5 // Primitive Lattice Cell 6 // Fundamental Types of Lattices 6 // Two-Dimensional Lattice Types 8 // Three-Dimensional Lattice Types 9 // index Systems for Crystal Planes 11 // Simple Crystal Structures 13 // Sodium Chloride Structure 13 // Cesium Chloride Structure 14 // Hexagonal Close-Packed Structure (hep) 15 // Diamond Structure 16 // Cubic Zinc Sulfide Structure 17 // Direct I maging of Atomic Structure IS // Nonideal Crystal Structures 18 // Random Stacking and Polytypism 19 // Crystal Structure Data 19 // Summary 22 // Problems 22 // Chapter 2: wave diffraction and the reciprocal // lattice 25 // Diffraction of Waves by C ryst al s 27 // The Bragg Law 27 // Scattered Wave Amplitude 28 // Fourier Analysis 29 // Reciprocal Lattice Vectors 31 // Diffraction Conditions 32 // Lane Equations 34 // Brillouin Zones 35 // Reciprocal Lattice to sc Lattice 36 // Reciprocal Lattice to bcc Lattice 38 // Reciprocal Lattice to fee Lattice 39 // Vlil // Contents // Fourier Analysis of the Basis 41 // Structure Factor of the bee Lattice 42 // Structure Factor of the fee Lattice 42 // Atomic Form Factor 43 // Summary 45 // Problems 45 // Chapter 3: crystal binding and elastic constants 49 // Crystals of Inert Gases 51 // Van der Waals-London Interaction 55 // Repulsive Interaction 58 // Equilibrium Lattice Constants 60 // Cohesive Energy 61 // Ionic Crystals 62 // Electrostatic or Madelung Energy 62 // Evaluation of the Madelung Constant 66 // Covalent Crystals 69 // Metals 71 // Hydrogen bonds 72 // Atomic Radii 72 // Ionic Crystal Radii 74 // Analysis of Elastic Strains 75 // Dilation 77 // Stress Components 77 // Elastic Compliance and Stiffness // Constants 79 // Elastic Energy Density 79 // Elastic Stiffness Constants of Cubic Crystals 80 //
Bulk Modulus and Compressibility 82 // Elastic Waves in Cubic Crystals 82 // Waves in the [ 100] Direction 83 // Waves in the [110] Direction 84 // Summary 87 // Problems 87 // Chapter 4: phonons i. crystal vibrations 91 // Vibrations of Crystals with Monatomic Basis 93 // First Brillouin Zone 95 // Group Velocity 96 // Contents // ix // Long Wavelength Limit 96 // Derivation of Force Constants from Experiment 96 // Two Atoms per Primitive Basis 97 // Quantization of Elastic Waves 101 // Phonon Momentum 102 // Inelastic Scattering by Phonons 102 // Summary 104 // Problems 104 // Chapter 5: phonons 11. thermal properties 107 // Phonon Heat Capacity 109 // Planck Distribution 109 // Normal Mode Enumeration 110 // Density of States in One Dimension 110 // Density of States in Three Dimensions 113 // I )ebye M odel for Density of States 114 // Debye T‘ Law 116 // Einstein Model of the Density of States 116 // General Result for D((o) 119 // Anharmonic Crystal Interactions 121 // Thermal Expansion 122 // Thermal Conductivity 123 // Thermal Resistivity of Phonon Gas 125 // Umklapp Processes 127 // Imperfections 128 // Problems 130 // Chapter 6: free electron fermi gas 133 // Energy* Levels in One Dimension 136 // Effect of Temperature on llie Fermi- // Di rac Distribution 138 // Free Electron Gas in Three Dimensions 139 // Heat Capacity of the Electron Gas 143 // Experi mental Heat Capacity of Metals 147 // Heavy Fermions 149 // Electrical Conductivity and Ohm’s Law 149 // Experimental Electrical Resistivity of Metals 150 // Umklapp Scattering 153 // x // Contents // Motion in Magnetic Fields 154 // Hall Effect 155 // Thermal Conductivity of Metals 158 // Ratio of Thermal to Electrical Conductivity 158 // Problems 159 // Chapter 7: energy bands 163 // Nearly Free Electron Model 166 // Origin of the Energy Gap 167 // Magnitude of the Energy Gap 169 //
Bloch Functions 169 // Kronig-Penney Model 170 // Wave Equation of Electron in a // Periodic Potential 171 // Restatement of the Bloch Theorem 175 // Crystal Momentum of an Electron 175 // Solution of the Central Equation 176 // Kronig-Penney Model in Reciprocal Space 176 // Empty Lattice Approximation 178 // Approximate Solution Near a Zone Boundary 179 // Number of Orbitals in a Band 182 // Metals and Insulators 183 // Summary 184 // Problems 184 // Chapter 8: semiconductor crystals 187 // Band Gap 189 // E quationsol M otion 193 // Physical Derivation of /ik = F 195 // Holes 196 // Effective Mass 199 // Physical Interpretation of the Effective Mass 200 // Effective Masses in Semiconductors 202 // Silicon and Germanium 204 // Intrinsic Carrier Concentration 207 // Intrinsic Mobility 210 // Impurity Conductivity 211 // Donor States 211 // Acceptor States 213 // Thermal Ionization of Donors and Acceptors 215 // Contents // xi // Thermoelectric Effects 216 // Semi metals 217 // Superlattices 218 // Bloch Oscillator 219 // Zener Tunneling 219 // Summary 219 // Problems 220 // Chapter 9: fermi surfaces and metals 223 // Reduced Zone Scheme 225 // Periodic Zone Scheme 227 // Construction of Fermi Surfaces 228 // Nearly Free Electrons 230 // Electron Orbits, Hole Orbits, and Open Orbits 232 // Calculation of Energy Bands 234 // Tight Binding Method for Energy’ Bands 234 // Wigner-Seitz Method 238 // Cohesive Energy 239 // Pseudopotential Methods 241 // Experimental Methods in Fermi Surface Studies 244 // Quantization of Orbits in a Magnetic Field 244 // De Haas-van Alphen Effect 246 // Extremal Orbits 250 // Fermi Surface of Copper 251 // Magnetic Breakdown 253 // Summary 254 // Problems 254 // Chapter 10: superconductivity 259 // Experimental Survey 261 // Occurrence of Superconductivity 262 // Destruction of Superconductivity by Magnetic Fields 264 // Meissner Effect 264 //
Heat Capacity 266 // Energy Gap 268 // Microwave and Infrared Properties 270 // Isotope Effect 271 // Theoretical Survey 272 // Thermodynamics of the Superconducting Transition 272 // London Equation 275 // Coherence Length 278 // BCS Theory of Superconductivity 279 // BCS Ground State 280 // Klux Quantization in a Superconducting Ring 281 // Duration of Persistent Currents 284 // Type II Superconductors 285 // Vortex State 286 // Estimation of Hci and Hr2 286 // Single Particle Tunneling 289 // Joscphson Superconductor Tunneling 291 // Dc Joscphson Effect 291 // Ac Joscphson Effect 292 // Macroscopic Quantum Interference 294 // High-Temperature Superconductors 295 // Summary 296 // Problems 296 // Reference 298 // Chapter 11: diamagnetism and paramagnetism 299 // Langevin Diamagnetism Equation 301 // Quantum Theory oi Diamagnetism of // Mononuclear Systems 303 // Paramagnetism 304 // Quantum Theory of Paramagnetism 304 // Rare Eartli Ions 307 // Hund Rules 308 // Iron Group Ions 309 // Crystal Field Splitting 309 // Quenching of the Orbital Angular Momentum 310 // Spectroscopic Splitting Factor 313 // Van Vleck Temperature-Independent Paramagnetism 313 // Cooling by Isentropic Demagnetization 314 // Nuclear Demagnetization 316 // Paramagnetic Susceptibility of Conduction Electrons 317 // Summary 319 // Problems 320 // Chapter 12: ferromagnetism and antiferromagnetism 323 // Ferromagnetic Order 325 // Curie Point and the Exchange Integral 325 // Contents // ?? // Temperature Dependence of the Saturation // Magnetization 328 // Saturation Magnetization at Absolute Zero 330 // Magnons 332 // Quantization of Spin Waves 335 // Thermal Excitation of Magnons 336 // Neutron Magnetic Scattering 337 // Ferrimagnetic Order 338 // Curie Temperature and Susceptibility of Ferriniagnets 340 // Iron Garnets 341 // Antiferromagnetie Order 342 // Susceptibility Below the Neel Temperature 345 //
Antiferromagnetie Magnons 346 // Ferromagnetic Domains 348 // Anisotropy Energy 350 // Transition Region Between Domains 351 // Origin of Domains 353 // Coercivitv and Hysteresis 354 // Single-Domain Particles 356 // Geomagnetism and Biomagnetism 357 // Magnetic Force Microscopy 357 // Summary 359 // Problems 359 // Chapter 13: magnetic; resonance 363 // Nuclear Magnetic Resonance 365 // Equations of Motion 368 // Line Width 372 // Motional Narrowing 373 // Hyper line Splitting 375 // Examples: Paramagnetic Point Defects 377 // Centers in Alkali Halides 378 // Donor Atoms in Silicon 378 // Knight Shift 379 // Nuclear Quadmpole Resonances 381 // Ferromagnetic Resonance 381 // S h ape Effects in FMR 382 // Spin Wave Resonance 384 // Antiferromagnetie Resonance 385 // XIV // Contents // Electron Paramagnetic Resonance 388 // Exchange Narrowing 388 // Zero-field Splitting 388 // Principle of Maser Action 388 // Three-Level Maser 390 // Lasers 391 // Summary 392 // Problems 393 // Chapter 14: dielectrics and ferroelectrics 395 // Maxwell Equations 397 // Polarization 397 // Macroscopic Electric Field 398 // Depolarization Field, E| 400 // Local Electric Field at an Atom 402 // Lorentz Field, E2 404 // Field of Dipoles Inside Cavity, E3 404 // Dielectric Constant and Polarizability 405 // Electronic Polarizability 406 // Classical Theory of Electronic Polarizability 408 // Structural Phase Transitions 409 // Ferroelectric Crystals 409 // Classification of Ferroelectric Crystals 411 // Displacive Transitions 413 // Soft Optical Phonons 415 // Landau Theory of the Phase Transition 416 // Second-Order Transition 417 // First-Order Transition 419 // Antiferroeleetricity 421 // Ferroelectric Domains 421 // Piezoelectricity 423 // Summary 424 // Problems 425 // Chapter 15: plasmons, polaritons, and polarons 429 // Dielectric Function of the Electron Gas 431 //
Definitions of the Dielectric Function 431 // Plasma Optics 432 // Dispersion Relation for Electromagnetic Waves 433 // Transverse Optical Modes in a Plasma 434 // Transparency of Metals in the Ultraviolet 434 // Longitudinal Plasma Oscillations 434 // Plasmons 437 // Electrostatic Screening 439 // Screened Coulomb Potential 442 // Pseudopotential Component 1/(0) 443 // Mott Metal-Insulator Transition 443 // Screening and Phonons in Metals 445 // Polaritons 446 // LST Relation 450 // Electron-Electron Interaction 453 // Fermi Liquid 453 // Electron-Kleciron Collisions 453 // E1 ectron -Phonon Interaction: // Polarons 456 // Peioris Instability of Linear // Metals 45S // Summary 460 // Problems 460 // Chapter 16: optical processes and excitons 465 // Optical Reflectance 467 // Kramers-? ron ig Relations 468 // Mathematical Note 470 // Example: Conductivity of Collisionless // Electron Gas 471 // Electronic Interband Transitions 472 // Excitons 473 // Frenkel Excitons 475 // // Alkali Halides 478 // Molecular Crystals 478 // Weakly Bound (Mott-Wannier) Excitons 479 // Exciton Condensation into Electron-Hole // Drops (EIID) 479 // Raman Effect in Crystals 482 // Electron Spectroscopy with X-Rays 485 // Energy Loss of Fast Particles in a Solid 486 // Summary 487 // Problems 488 // XVI // Contents // Chapter 17: surface and interface physics 491 // Reconstruction and Relaxation 493 // Surface Crystallography 494 // Reflection High-Energy Electron // Diffraction 497 // Surface Electronic Structure 498 // Work Function 498 // Thermionic Emission 499 // Surface States 499 // Tangential Surface Transport 501 // Vlagnetoresistance in a Two-Dimensional Channel 502 // Integral Quantized I lall Effect (IQHE) 503 // IQ HE in Heal Systems 504 // Fractional Quantized Hall Effect (FQH E) 507 // p-n Junctions 507 // Rectification 508 // Solar Cells and Photovoltaic Detectors 510
Schottky Barrier 510 // Heterostructures 511 // n-N Heterojunction 512 // Semiconductor Lasers 514 // Light-Emitting Diodes 515 // Problems 517 // Chapter 18: nanostructures 521 // Imaging Techniques for Nanostructures 525 // Electron Microscopy 526 // Optical Microscopy 527 // Scanning Tunneling Microscopy 529 // Atomic Force Microscopy 532 // Electronic Structure of ID Systems 534 // One-dimensional (ID) Subbands 534 // Spectroscopy of Van I love Singularities 535 // ID Metals—Coulomb Interactions and Lattice Couplings 537 // Electrical Transport in ID 539 // Conductance Quantization and the Landauer Formula 539 // Two Barriers in Series-Resonant Tunneling 542 // Incoherent Addition and Ohm’s Law 544 // Localization 545 // Voltage Probes and (lie ?üttiker-Landauer // Formalism r’ 546 // Electronic Structure of OD Systems 551 // Quantized Energy Levels 551 // Semiconductor Nanocrystals 551 // Metallic Dots 553 // Discrete Charge States 555 // Electrical Transport in OD 557 // Coulomb Oscillations 557 // Spin, Mott Insulators, and the Korido Effect 560 // Cooper Pairing in Superconducting Dots 562 // Vibrational and Thermal Properties 563 // Quantized Vibrational Modes 563 // Transverse Vibrations 565 // I leal Capacity and Thermal Transport 567 // Summary 568 // Problems 568 // Chapter 19: noncrystalline solids 573 // Diffraction Pattern 575 // Monatomic Amorphous Materials 576 // Radial Distribution Function 577 // Structure of Vitreous Silica, Si02 578 // Glasses 581 // Viscosity and the Hopping Rate 582 // Amorphous Ferromagnets 583 // Amorphous Semiconductors 585 // Low Energy Excitations in Amorphous Solids 586 // Heat Capacity Calculation 586 // Thermal Conductivity 587 // Fiber Optics 589 // Rayleigh Attenuation 590 // Problems 590 // Chapter 20: point defects 593 // Lattice Vacancies 595 // Diffusion 598 // Metals 601 // Color Centers 602 //
Other Centers in Alkali Halides 603 // Problems 605 // Chapter 21: dislocations 607 // Shear Strength of Single Crystals 609 // Slip 610 // Dislocations 611 // Burgers Vectors 614 // Stress Fields of Dislocations 615 // Low-angle Grain Boundaries 617 // Dislocation Densities 620 // Dislocation Multiplication and Slip 621 // Strength of Alloys 623 // Dislocations and Crystal Growth 625 // Whiskers 626 // Hardness of Materials 627 // Problems 628 // Chapter 22: alloys 631 // General Considerations 633 // Substitutional Solid Solutions— // Hume-Rothery Rules 636 // Order-Disorder Transformation 639 // Elementary Theory of Order 641 // Phase Diagrams 644 // Eutectics 644 // Transition Metal Alloys 646 // Electrical Conductivity 648 // Korido Effect 649 // Problems 652 // Appendix A: Temperature Dependence of the Reflection Lines 653 // Appendix B: Ewald Calculation of Lattice Sums 656 // Ewald-Kornfeld Method for Lattice Sums // for Dipole Arrays 659 // Contents // XIX // Appiondix C: Quantization of Elastic Waves: Phonons 660 // Phonon Coordinates 661 // Creation and Annihilation Operators 663 // Appendix D: Fermi-Dirac Distribution Function 664 // Appendix E: Derivation of the dli/dt Equation 667 // Appendix F: Boltzmann Transport Equation 668 // Parti c:l e I )i ffu si on 669 // Classical Distribution 670 // Fermi-Dirac Distribution 671 // Electrical Conductivity 673 // Appendix G: Vector Potential, Field Momentum, // and Gauge Transformations 673 // Lagrangian Ecjuations of Motion 674 // Derivation of the Hamiltonian 675 // Field Momentum 675 // Gauge Transformation 676 // Gauge in the London Equation 677 // Appendix H: Cooper Pairs 677 // Appendix I: Ginzburg-Landau Equation 679 // Appendix J: Electron-Phonon Collisions 683 // Index 687

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC