Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 23.07.2022. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Second edition
Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo : Elsevier, 2014
xiv, 857 stran : ilustrace ; 24 cm

objednat
ISBN 978-0-12-385030-0 (vázáno)
Obsahuje bibliografie a rejstřík
001640385
Preface to the second edition xi // Preface to the first edition xiii // 1 Electrons in One-Dimensional Periodic Potentials 1 // 1.1 The Bloch Theorem for One-Dimensional Periodicity 2 // 1.2 Energy Levels of a Single Quantum Well and of a Periodic Array // of Quantum Wells 5 // 1.3 Transfer Matrix, Resonant Tunneling, and Energy Bands 12 // 1.4 The Tight-Binding Model 25 // 1.5 Plane Waves and Nearly Free-Electron Model 34 // 1.6 Some Dynamical Aspects of Electrons in Band Theory 38 // Appendix A. Solved Problems and Complements 49 // Further Reading 64 // 2 Geometrical Description of Crystals: Direct and Reciprocal Lattices 67 // 2.1 Simple Lattices and Composite Lattices 67 // 2.2 Geometrical Description of Some Crystal Structures 72 // 2.3 Wigner-Seitz Primitive Cells 83 // 2.4 Reciprocal Lattices 84 // 2.5 Brillouin Zones 88 // 2.6 Translational Symmetry and Quantum Mechanical Aspects 91 // 2.7 Density-of-States and Critical Points 99 // Further Reading 104 // 3 The Sommerfeld Free-Electron Theory of Metals 107 // 3.1 Quantum Theory of the Free-Electron Gas 107 // 3.2 Fermi-Dirac Distribution Function and Chemical Potential 112 // 3.3 Electronic Specific Heat in Metals and Thermodynamic Functions 116 // 3.4 Thermionic Emission from Metals 118 // Appendix A. Outline of Statistical Physics and Thermodynamic Relations 120 // Appendix B. Fermi-Dirac and Bose-Einstein Statistics for Independent Particles 125 // Appendix C. Modified Fermi-Dirac Statistics in aModel of Correlation Effects 131 // Further Reading 133 // 4 The One-Electron Approximation and Beyond 135 // 4.1 Introductory Remarks on the Many-Electron Problem 136 // 4.2 The Hartree Equations 137 // 4.3 Identical Particles and Determinantal Wavefunctions 139 // 4.4 Matrix Elements Between Determinantal States 140 // 4.5 The Hartree-Fock Equations 144 //
4.6 Overview of Approaches Beyond the One-Electron Approximation 154 // 4.7 Electronic Properties and Phase Diagram of the Homogeneous Electron Gas 155 // 4.8 The Density Functional Theory and the Kohn-Sham Equations 163 // Appendix A. Bielectronic Integrals Among Spin Orbitals 171 // Appendix B. Outline of Second Quantization Formalism for Identical Fermions 172 Appendix C. An Integral on the Fermi Sphere 175 // Further Reading 176 // 5 Band Theory of Crystals 179 // 5.1 Basic Assumptions of the Band Theory 180 // 5.2 The Tight-Binding Method (LCAO Method) 182 // 5.3 The Orthogonalized Plane Wave (OPW) Method 189 // 5.4 The Pseudopotential Method 197 // 5.5 The Cellular Method 204 // 5.6 The Augmented Plane Wave (APW) Method 207 // 5.7 The Green’s Function Method (KKR Method) 211 // 5.8 Iterative Methods in Electronic Structure Calculations 217 // Appendix A. Matrix Elements of the Augmented Plane Wave Method 228 // Appendix B. Solved Problems and Complements 232 // Appendix C. Evaluation of the Structure Coefficients of the KKR // Method with the Ewald Procedure 235 // Further Reading 240 // 6 Electronic Properties of Selected Crystals 243 // 6.1 Band Structure and Cohesive Energy of Rare-Gas Solids 244 // 6.2 Electronic Properties of Ionic Crystals 251 // 6.3 Covalent Crystals with Diamond Structure 263 // 6.4 Band Structures and Fermi Surfaces of Some Metals 266 // 6.5 Carbon-Based Materials and Electronic Structure of Graphene 272 // Appendix A. Solved Problems and Complements 277 // Further Reading 284 // 7 Excitons, Plasmons, and Dielectric Screening in Crystals 287 // 7.1 Exciton States in Crystals 288 // 7.2 Plasmon Excitations in Crystals 296 // 7.3 Static Dielectric Screening in Metals within the Thomas-Fermi Model 298 // 7.4 The Longitudinal Dielectric Function within the Linear Response Theory 301 //
7.5 Dielectric Screening within the Lindhard Model 304 // 7.6 Quantum Expression of the Longitudinal Dielectric Function in Crystals 312 // 7.7 Surface Plasmons and Surface Polaritons 314 // Appendix A. Friede! Sum Rule and Fumi Theorem 318 // Appendix B. Quantum Expression of the Longitudinal Dielectric // Function in Materials with the Linear Response Theory 320 // Appendix C. Lindhard Dielectric Function for the Free-Electron Gas 325 // Appendix D. Quantum Expression of the Transverse Dielectric Function // in Materials with the Linear Response Theory 328 // Further Readi ng 331 // 8 Interacting Electronic-Nuclear Systems and the Adiabatic Principle 333 // 8.1 Interacting Electronic-Nuclear Systems and Adiabatic Potential-Energy Surfaces 334 // 8.2 Non-Degenerate Adiabatic Surface and Nuclear Dynamics 337 // 8.3 Degenerate Adiabatic Surfaces and Jahn-Teller Systems 342 // 8.4 The Hellmann-Feynman Theorem and Electronic-Nuclear Systems 356 // 8.5 Parametric Hamiltonians and Berry Phase 359 // 8.6 The Berry Phase Theory of the Macroscopic Electric Polarization in Crystals 364 // Appendix A. Simplified Evaluation of Typical Jahn-Teller and Renner-Teller Matrices 371 // Appendix B. Solved Problems and Complements 377 // Further Reading 389 // 9 Lattice Dynamics of Crystals 391 // 9.1 Dynamics of Monoatomic One-Dimensional Lattices 391 // 9.2 Dynamics of Diatomic One-Dimensional Lattices 396 // 9.3 Dynamics of General Three-Dimensional Crystals 400 // 9.4 Quantum Theory of the Harmonic Crystal 407 // 9.5 Lattice Heat Capacity. Einstein and Debye Models 410 // 9.6 Considerations on Anharmonic Effects and Melting of Solids 412 // 9.7 Optical Phonons and Polaritons in Polar Crystals 415 // Appendix A. Quantum Theory of the Linear Harmonic Oscillator 430 // Further Reading 436 // 10 Scattering of Particles by Crystals 437 // 10.1 General Considerations 437 //
10.2 Elastic Scattering of X-rays from Crystals and the // Thomson Approximation 440 // 10.3 Compton Scattering and Electron Momentum Density 455 // 10.4 Inelastic Scattering of Particles and Phonons Spectra of Crystals 459 // 10.5 Quantum Theory of Elastic and Inelastic Scattering of Neutrons 463 // 10.6 Dynamical Structure Factor for Harmonic Displacements and // Debye-Waller Factor 467 // 10.7 Mössbauer Effect 474 // Appendix A. Solved Problems and Complements 476 // Further Reading 481 // 11 Optical and Transport Properties of Metals 483 // 11.1 Macroscopic Theory of Optical Constants in Homogeneous // Materials 484 // 11.2 The Drude Theory of the Optical Properties of Free Carriers 490 // 11.3 Transport Properties and Boltzmann Equation 499 // 11.4 Static and Dynamic Conductivity in Metals 502 // 11.5 Boltzmann Treatment and Quantum Treatment of Intraband Transitions 508 // 11.6 The Boltzmann Equation in Electric Fields and Temperature Gradients 509 // Appendix A. Solved Problems and Complements 523 // Further Reading 527 // viii // Contents // 12 Optical Properties of Semiconductors and Insulators 529 // 12.1 Transverse Dielectric Function and Optical Constants in // Homogeneous Media 530 // 12.2 Quantum Theory of Band-to-Band Optical Transitions and Critical Points 534 // 12.3 Indirect Phonon-Assisted Transitions 539 // 12.4 Two-Photon Absorption 544 // 12.5 Exciton Effects on the Optical Properties 547 // 12.6 Fano Resonances and Absorption Lineshapes 553 // 12.7 Optical Properties of Vibronic Systems 559 // Appendix A. Transitions Rates at First and Higher Orders of Perturbation Theory 569 // Appendix B. Optical Constants, Green’s Function and Kubo-Greenwood Relation 574 // Further Reading 575 // 13 Transport in Intrinsic and Homogeneously Doped Semiconductors 577 // 13.1 Fermi Level and Carrier Density in Intrinsic Semiconductors 577 //
13.2 Impurity Levels in Semiconductors 582 // 13.3 Fermi Level and Carrier Density in Doped Semiconductors 590 // 13.4 Non-Equilibrium Carrier Distributions 594 // 13.5 Generation and Recombination of Electron-Hole Pairs in // Doped Semiconductors 599 // Appendix A. Solutions of Typical Transport Equations in Uniformly // Doped Semiconductors 601 // Further Reading 608 // 14 Transport in Inhomogeneous Semiconductors 609 // 14.1 Properties of the p-n Junction at Equilibrium 609 // 14.2 Current-Voltage Characteristics of the p-n Junction 615 // 14.3 The Bipolar Junction Transistor 621 // 14.4 Semiconductor Heterojunctions 624 // 14.5 Metal-Semiconductor Contacts 627 // 14.6 Metal-Oxide-Semiconductor Structure 632 // 14.7 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 637 // Further Reading 640 // 15 Electron Gas in Magnetic Fields 643 // 15.1 Magnetization and Magnetic Susceptibility 644 // 15.2 Energy Levels and Density-of-States of a Free Electron Gas in // Magnetic Fields 646 // 15.3 Landau Diamagnetism and de Haas-van Alphen Effect 655 // 15.4 Spin Paramagnetism of a Free-Electron Gas 661 // 15.5 Magnetoresistivity and Classical Hall Effect 662 // 15.6 Quantum Hall Effects 668 // Appendix A. Solved Problems and Complements 686 // Further Reading 694 // 16 Magnetic Properties of Localized Systems and Kondo Impurities 697 // 16.1 Quantum Mechanical Treatment of Magnetic Susceptibility 698 // 16.2 Permanent Magnetic Dipoles in Atoms or Ions with Partially Filled Shells // 16.3 Paramagnetism of Localized Magnetic Moments 704 // 16.4 Localized Magnetic States in Normal Metals 709 // 16.5 Dilute Magnetic Alloys and the Resistance Minimum Phenomenon 714 // 16.6 Magnetic Impurity in Normal Metals at Very Low Temperatures 724 // Further Reading 729 // 17 Magnetic Ordering in Crystals 731 // 17.1 Ferromagnetism and the Weiss Molecular Field 732 //
17.2 Microscopic Origin of the Coupling Between Localized // Magnetic Moments 741 // 17.3 Antiferromagnetism in the Mean Field Approximation 748 // 17.4 Spin Waves and Magnons in Ferromagnetic Crystals 750 // 17.5 The Ising Model with the Transfer Matrix Method 756 // 17.6 The Ising Model with the Renormalization Group Theory 761 // 17.7 Itinerant Magnetism 769 // Appendix A. Solved Problems and Complements 775 // Further Reading 787 // 18 Superconductivity 789 // 18.1 Some Phenomenological Aspects of Superconductors 790 // 18.2 The Cooper Pair Idea 799 // 18.3 Ground State for a Superconductor in the BCS Theory at Zero Temperature 805 // 18.4 Excited States of Superconductors at Zero Temperature 813 // 18.5 Treatment of Superconductors at Finite Temperature and Heat Capacity 820 // 18.6 The Phenomenological London Model for Superconductors 824 // 18.7 Macroscopic Quantum Phenomena 828 // 18.8 Tunneling Effects 837 // Appendix A. The Phonon-Induced Electron-Electron Interaction 845 // Further Reading // CONTENTS SYNOPSIS // Index 851 // Chapters 1, 2, 3 Introductory information // Chapters 4, 5, 6, 7 Electronic structure of crystals // Chapters 8,9 Adiabatic principle and lattice vibrations // Chapters 10, 11, 12, 13, 14 Scattering; optical and transport properties // Chapters 15, 16, 17 Magnetic field effects and magnetism // Chapter 18 // Superconductivity

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC