Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 24.07.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
9th edition
Hoboken : Wiley, [2015]
xxiii, 905 stran : barevné ilustrace ; 26 cm

objednat
ISBN 978-1-118-31922-2 (brožováno)
Terminologický slovník
Obsahuje bibliografie a rejstřík
001640453
List of Symbols xxi // 1. Introduction I // Learning Objectives 2 // 1.1 Historical Perspective 2 // 1.2 Materials Science and Engineering 2 // 1.3 Why Study Materials Science // and Engineering? 4 Case Study—Liberty Ship Failures 5 // 1.4 Classification of Materials 6 // Case Study —Carbonated Beverage // Containers 11 // 1.5 Advanced Materials 12 // 1.6 Modern Materials1 Needs 14 // Summary 15 // References 15 Question 16 // 2. Atomic Structure and Interatomic Bonding 17 // Learning Objectives 18 // 2.1 Introduction 18 // Atomic Structure 18 // 2.2 Fundamental Concepts 18 // 2.3 Electrons in Atoms 20 // 2.4 The Periodic Table 26 // Atomic Bonding in Solids 28 // 2.5 Bonding Forces and Energies 28 // 2.6 Primary Interatomic Bonds 30 // 2.7 Secondary Bonding or van der Waals // Bonding 37 // Materials of Importance —Water (Its Volume Expansion upon Freezing) 40 // 2.8 Mixed Bonding 41 // 2.9 Molecules 42 // 2.10 Bonding Type-Material Classification // Correlations 42 Summary 43 References 44 Questions and Problems 44 // 3. Fundamentals of Crystallography 47 // Learning Objectives 48 // 3.1 Introduction 48 // Crystal Structures 48 // 3.2 Fundamental Concepts 48 // 3.3 Unit Cells 49 // 3.4 Crystal Systems 50 // Crystallographic Points, // Directions, and Planes 51 // 3.5 Point Coordinates 52 // 3.6 Crystallographic Directions 54 // 3.7 Crystallographic Planes 60 // Crystalline and Noncrystalline Materials 65 // 3.8 Single Crystals 65 // 3.9 Polycrystalline Materials 65 // 3.10 Anisotropy 67 // 3.11 Noncrystalline Solids 67 Summary 68 References 69 Questions and Problems 69 // 4. The Structure of Crystalline Solids 73 // Learning Objectives 74 // 4.1 Introduction 74 // Metallic Crystal Structures 74 // 4.2 The Face-Centered Cubic Crystal Structure 75 // 4.3 The Body-Centered Cubic Crystal // Structure 76 // 4.4 The Hexagonal Close-Packed Crystal Structure 77 //
4.5 Density Computations-Metals 80 // Ceramic Crystal Structures 81 // 4.6 Ionic Arrangement Geometries 82 // 4.7 AX-Type Crystal Structures 85 // 4.8 AmXp-Type Crystal Structures 86 // 4.9 ??? Crystal Structures 86 // 4.10 Density Computations-Ceramics 88 // 4.11 Silicate Ceramics 89 // 4.12 Carbon 93 // 4.13 Polymer Crystallinity 94 // 4.14 Polymorphism and Allotropy 97 // 4.15 Atomic Arrangements 97 // 4.16 Linear and Planar Densities 97 Material of Importance—Tin (Its Allotropie Transformation) 98 // 4.17 Close-Packed Crystal Structures 100 // X-Ray Diffraction: Determination of Crystal Structures 103 // 4.18 The Diffraction Phenomenon 103 // 4.19 X-Ray Diffraction and Bragg’s Law 105 // 4.20 Diffraction Techniques 106 Summary 109 References 111 // Questions and Problems 111 Design Problems 116 // 5. Structures of Polymers 117 // Learning Objectives 118 // 5.1 Introduction 118 // 5.2 Hydrocarbon Molecules 118 // 5.3 Polymer Molecules 121 // 5.4 The Chemistry of Polymer Molecules 121 // 5.5 Molecular Weight 125 // 5.6 Molecular Shape 128 // 5.7 Molecular Structure 130 // 5.8 Molecular Configurations 131 // 5.9 Thermoplastic and Thermosetting // Polymers 134 // 5.10 Copolymers 135 // 5.11 Polymer Crystals 137 Summary 139 References 140 Questions and Problems 141 // 6. Imperfections in Solids 143 // Learning Objectives 144 // 6.1 Introduction 144 // Point Defects 144 // 6.2 Point Defects in Metals 144 // 6.3 Point Defects in Ceramics 146 // 6.4 Impurities in Solids 149 // 6.5 Point Defects in Polymers 153 // 6.6 Specification of Composition 154 // Miscellaneous Imperfections 158 // 6.7 Dislocations—Linear Defects 158 // 6.8 Interfacial Defects 161 // Materials of Importance — Catalysts (and Surface Defects) 164 // 6.9 Bulk or Volume Defects 165 // 6.10 Atomic Vibrations 165 // Microscopic Examination 166 // 6.11 Basic Concepts of Microscopy 166 //
6.12 Microscopic Techniques 167 // 6.13 Grain-Size Determination 171 // Summary 174 // References 176 // Questions and Problems 176 // Design Problems 179 // 7. Diffusion 180 // Learning Objectives 181 // 7.1 Introduction 181 // 7.2 Diffusion Mechanisms 182 // 7.3 Steady-State Diffusion 183 // 7.4 Nonsteady-State Diffusion 185 // 7.5 Factors That Influence Diffusion 189 // 7.6 Diffusion in Semiconducting // Materials 194 Materials of Importance — Aluminum for Integrated Circuit Interconnects 197 // 7.7 Other Diffusion Paths 198 // 7.8 Diffusion in Ionic and Polymeric // Materials 198 Summary 201 References 203 Questions and Problems 203 Design Problems 206 // 8. Mechanical Properties of Metals 208 // Learning Objectives 209 // 8.1 Introduction 209 // 8.2 Concepts of Stress and Strain 210 // 8.3 Elastic Deformation 214 // 8.4 Plastic Deformation 220 // 8.5 Hardness 231 // Property Variability and Design/Safety Factors 237 // 8.6 Variability of Material Properties 237 // 8.7 Design/Safety Factors 239 // Summary 243 References 245 Questions and Problems 245 Design Problems 251 // 9. Dislocations and Strengthening Mechanisms 253 // Learning Objectives 254 // 9.1 Introduction 254 // Dislocations and Plastic Deformation 254 // 9.2 Basic Concepts 255 // 9.3 Characteristics of Dislocations 257 // 9.4 Slip Systems 258 // 9.5 Slip in Single Crystals 260 // 9.6 Plastic Deformation of Polycrystalline Materials 263 // 9.7 Deformation by Twinning 265 // Mechanisms of Strengthening in Metals 266 // 9.8 Strengthening by Grain Size // Reduction 266 // 9.9 Solid-Solution Strengthening 268 // 9.10 Strain Hardening 269 // Recovery, Recrystallization, and Grain Growth 272 // 9.11 Recovery 272 // 9.12 Recrystallization 273 // 9.13 Grain Growth 277 Summary 279 References 281 // Questions and Problems 281 Design Problems 284 //
10. Failure 285 // Learning Objectives 286 // 10.1 Introduction 286 // Fracture 287 // 10.2 Fundamentals of Fracture 287 // 10.3 Ductile Fracture 287 // 10.4 Brittle Fracture 289 // 10.5 Principles of Fracture Mechanics 291 // 10.6 Fracture Toughness Testing 299 // Fatigue 804 // 10.7 Cyclic Stresses 304 // 10.8 The S-N Curve 306 // 10.9 Crack Initiation and Propagation 310 // 10.10 Factors That Affect Fatigue Life 312 // 10.11 Environmental Effects 314 // Creep 315 // 10.12 Generalized Creep Behavior 315 // 10.13 Stress and Temperature Effects 316 // 10.14 Data Extrapolation Methods 319 // 10.15 Alloys for High-Temperature Use 320 // Summary 321 References 324 Questions and Problems 324 Design Problems 328 // 11. Phase Diagrams 329 // Learning Objectives 330 // 11.1 Introduction 330 // Definitions and Basic Concepts 330 // 11.2 Solubility Limit 331 // 11.3 Phases 332 // 11.4 Microstructure 332 // 11.5 Phase Equilibria 332 // 11.6 One-Component (or Unary) // Phase Diagrams 333 // Binary Phase Diagrams 334 // 11.7 Binary Isomorphous Systems 335 // 11.8 Interpretation of Phase Diagrams 337 // 11.9
Development of Microstructure in Isomorphous Alloys 341 // 11.10 Mechanical Properties of Isomorphous // Alloys 342 // 11.11 Binary Eutectic Systems 343 // 11.12 Development of Microstructure in // Eutectic Alloys 348 Materials of Importance —Lead-Free Solders 349 // 11.13 Equilibrium Diagrams Having Intermediate // Phases or Compounds 355 // 11.14 Eutectoid and Peritectic Reactions 358 // 11.15 Congruent Phase Transformations 359 // 11.16 Ceramic and Ternary Phase Diagrams 360 // 11.17 The Gibbs Phase Rule 360 // The Iron-Carbon System 363 // 11.18 The Iron-Iron Carbide (Fe-Fe3C) // Phase Diagram 363 // 11.19 Development of Microstructure in // Iron-Carbon Alloys 366 // 11.20 The Influence of Other // Alloying Elements 374 Summary 374 References 377 Questions and Problems 377 // 12. Phase Transformations 384 // Learning Objectives 385 // 12.1 Introduction 385 // Phase Transformations 385 // Basic Concepts 385 // The Kinetics of Phase Transformations 386 // 12.4 Metastable versus Equilibrium States 397 // Microstructural and property chances in Iron-Carbon Alloys 398 // Isothermal Transformation Diagrams 398 Continuous-Cooling Transformation Diagrams 409 // Mechanical Behavior of Iron-Carbon Alloys 412 // Tempered Martensite 416 Review of Phase Transformations and Mechanical Properties for Iron-Carbon Alloys 419 // Materials of Importance-Shape-Memory Alloys 422 Summary 425 References 427 Questions and Problems 427 Design Problems 431 // 13. Properties and Applications of Metals 432 // Learning Objectives 433 Introduction 433 // Ferrois Alloys 433 // Steels 434 // Cast Irons 439 // Noni Errols Alloys 445 // Copper and Its Alloys 446 // Aluminum and Its Alloys 447 // Magnesium and Its Alloys 450 // Titanium and Its Alloys 451 // The Refractory Metals 452 // The Superalloys 454 // The Noble Metals 455 // Miscellaneous Nonferrous Alloys 455 //
Materials of Importance — Metal Alloys Used for Euro Coins 456 // Summary 457 References 458 Questions and Problems 458 Design Problems 458 // 14. Properties and Applications of Ceramics 460 // Learning Objectives 461 Introduction 461 // Ceramic Phase Diagrams 461 // The ???-??? System 462 // The Mg0-Al2O3 System 462 // 14.4 The ZrO2-CaO System 463 // 14.5 The S?O2-AI2O3 System 464 // Mechanical Properties 465 // 14.6 Brittle Fracture of Ceramics 465 // 14.7 Stress-Strain Behavior 469 // 14.8 Mechanisms of Plastic Deformation 471 // 14.9 Miscellaneous Mechanical // Considerations 473 // Types and Applications of Ceramics 475 // 14.10 Glasses 476 // 14.11 Glass-Ceramics 476 // 14.12 Clay Products 478 // 14.13 Refractories 478 // 14.14 Abrasives 480 // 14.15 Cements 481 // 14.16 Carbons 482 // 14.17 Advanced Ceramics 484 Summary 489 References 492 Questions and Problems 492 Design Problems 494 // 15. Characteristics and Applications of Polymers 495 // Learning Objectives 496 // 15.1 Introduction 496 // Mechanical Behavior of Polymers 496 // 15.2 Stress-Strain Behavior 496 // 15.3 Macroscopic Deformation 498 // 15.4 Viscoelastic Deformation 499 // 15.5 Fracture of Polymers 503 // 15.6 Miscellaneous Mechanical // Characteristics 505 // Mechanisms of Deformation and for Strengthening oe Polymers 506 // 15.7 Deformation of Semicrystalline // Polymers 506 // 15.8 Factors That Influence the Mechanical // Properties of Semicrystalline Polymers 508 // Materials of Importance —Shrink-Warp Polymer Films 512 // 15.9 Deformation of Elastomers 512 // Crystallization, Melting, and Glass-Transition Phenomena in Polymers 514 // 15.10 Crystallization 515 // 15.11 Melting 516 // 15.12 The Glass Transition 516 // 15.13 Melting and Glass Transition // Temperatures 516 // 15.14 Factors That Influence Melting and // Glass Transition Temperatures 518 // Polymer Types 520 //
15.15 Plastics 520 // Materials of Importance —Phenolic Billiard Balls 522 // 15.16 Elastomers 523 // 15.17 Fibers 525 // 15.18 Miscellaneous Applications 525 // 15.19 Advanced Polymeric Materials 527 Summary 531 // References 533 Questions and Problems 533 Design Questions 537 // 16. Composite Materials 538 // Learning Objectives 539 // 16.1 Introduction 539 // Particle-Reinforced Composites 541 // 16.2 Large-Particle Composites 541 // 16.3 Dispersion-Strengthened Composites 545 // Fiber-Reinforced Composites 546 // 16.4 Influence of Fiber Length 546 // 16.5 Influence of Fiber Orientation and Concentration 547 // 16.6 The Fiber Phase 556 // 16.7 The Matrix Phase 557 // 16.8 Polymer-Matrix Composites 557 // 16.9 Metal-Matrix Composites 563 // 16.10 Ceramic-Matrix Composites 564 // 16.11 Carbon-Carbon Composites 566 // 16.12 Hybrid Composites 566 // 16.13 Processing of Fiber-Reinforced Composites 567 // Structural Composites 569 // 16.14 Laminar Composites 569 // 16.15 Sandwich Panels 571 // Case Study—Use of Composites in the Boeing 787 Dreamliner 573 // 16.16 Nanocomposites 574 Summary 577 References 579 Questions and Problems 580 Design Problems 582 // 17. Fabrication and Processing // of Engineering Materials 584 // Learning Objectives 585 // 17.1 Introduction 585 // Fabrication of Metals 585 // 17.2 Forming Operations 586 // 17.3 Casting 588 // 17.4 Miscellaneous Techniques 589 // Thermal Processing of Metals 591 // 17.5 Annealing Processes 591 // 17.6 Heat Treatment of Steels 593 // 17.7 Precipitation Hardening 603 // Fabrication vnd Processing of Ceramics 610 // 17.8 Fabrication and Processing of Glasses and Glass-Ceramics 610 // 17.9 Fabrication and Processing of Clay Products 615 // 17.10 Powder Pressing 620 // 17.11 Tape Casting 622 // Synthesis and Processing of Polymers 628 // 17.12 Polymerization 623 // 17.13 Polymer Additives 625 //
17.14 Forming Techniques for Plastics 627 // 17.15 Fabrication of Elastomers 629 // 17.16 Fabrication of Fibers and Films 630 Summary 631 // References 634 Questions and Problems 634 Design Problems 636 // 18. Corrosion and Degradation of Materials 638 // Learning Objectives 639 // 18.1 Introduction 639 // Corrosion of Metals 640 // 18.2 Electrochemical Considerations 640 // 18.3 Corrosion Rates 647 // 18.4 Prediction of Corrosion Rates 648 // 18.5 Passivity 655 // 18.6 Environmental Effects 656 // 18.7 Forms of Corrosion 656 // 18.8 Corrosion Environments 664 // 18.9 Corrosion Prevention 664 // 18.10 Oxidation 666 // Corrosion of Ceramic Materials 669 Degradation of Polymers 670 // 18.11 Swelling and Dissolution 670 // 18.12 Bond Rupture 672 // 18.13 Weathering 673 Summary 674 References 676 // Questions and Problems 676 Design Problems 679 // 19. Electrical Properties 680 // Learning Objectives 681 // 19.1 Introduction 681 // Electrical Conduction 681 // 19.2 Ohm’s Law 681 // 19.3 Electrical Conductivity 682 // 19.4 Electronic and Ionic Conduction 683 // 19.5 Energy Band Structures in Solids 683 // 19.6 Conduction in Terms of Band // and Atomic Bonding Models 685 // 19.7 Electron Mobility 687 // 19.8 Electrical Resistivity of Metals 688 // 19.9 Electrical Characteristics of Commercial // Alloys 691 // Materials of Importance — Aluminum Electrical Wires 691 // Semiconductivity 693 // 19.10 Intrinsic Semiconduction 693 // 19.11 Extrinsic Semiconduction 696 // 19.12 The Temperature Dependence of Carrier Concentration 699 // 19.13 Factors That Affect Carrier Mobility 700 // 19.14 The Hall Effect 704 // 19.15 Semiconductor Devices 706 // Electrical Conduction in Ionic Ceramics and in Polymers 712 // 19.16 Conduction in Ionic Materials 713 // 19.17 Electrical Properties of Polymers 713 // Dielectric Behavior 714 // 19.18 Capacitance 714 //
19.19 Field Vectors and Polarization 716 // 19.20 Types of Polarization 719 // 19.21 Frequency Dependence of the Dielectric // Constant 721 // 19.22 Dielectric Strength 722 // 19.23 Dielectric Materials 722 // O i her Electrical Characteristics of Materials 722 // 19.24 Ferroelectricity 722 // 19.25 Piezoelectricity 723 // Material of Importance —Piezoelectric Ceramic Ink-Jet Printer Heads 724 Summary 725 References 728 Questions and Problems 728 Design Problems 732 // 20. Thermal Properties 734 // Learning Objectives 735 // 20.1 Introduction 735 // 20.2 Heat Capacity 735 // 20.3 Thermal Expansion 739 // Materials of Importance—Invar and Other Low-Expansion Alloys 741 // 20.4 Thermal Conductivity 742 // 20.5 Thermal Stresses 745 Summary 747 References 748 Questions and Problems 748 Design Problems 750 // 21. Magnetic Properties 751 // Learning Objectives 752 // 21.1 Introduction 752 // 21.2 Basic Concepts 752 // 21.3 Diamagnetism and Paramagnetism 756 // 21.4 Ferromagnetism 758 // 21.5 Antiferromagnetism // and Ferrimagnetism 759 // 21.6 The Influence of Temperature on // Magnetic Behavior 763 // 21.7 Domains and Hysteresis 764 // 21.8 Magnetic Anisotropy 767 // 21.9 Soft Magnetic Materials 768 Materials of Importance — An Iron-Silicon Alloy Used in Transformer Cores 769 // 21.10 Hard Magnetic Materials 770 // 21.11 Magnetic Storage 773 // 21.12 Superconductivity 776 Summary 779 References 781 Questions and Problems 781 Design Problems 784 // 22. Optical Properties 785 // Learning Objectives 786 // 22.1 Introduction 786 // Basic Concepts 786 // 22.2 Electromagnetic Radiation 786 // 22.3 Light Interactions with Solids 788 // 22.4 Atomic and Electronic Interactions 789 // Optical Properties of Metals 790 Optical Properties of Nonmetals 791 // 22.5 Refraction 791 // 22.6 Reflection 793 // 22.7 Absorption 793 // 22.8 Transmission 797 // 22.9 Color 797 //
22.10 Opacity and Translucency in Insulators 799 // Applications of Optical Phenomena 800 // 22.11 Luminescence 800 // 22.12 Photoconductivity 800 // Materials of Importance — Light-Emitting Diodes 801 // 22.13 Lasers 803 // 22.14 Optical Fibers in Communications 807 Summary 809 // References 811 // Questions and Problems 812 // Design Problem 813 // 23. Economic, Environmental, and Societal Issues in Materials Science and Engineering 814 // Learning Objectives 815 // 23.1 Introduction 815 // Economic Considerations 815 // 23.2 Component Design 816 // 23.3 Materials 816 // 23.4 Manufacturing Techniques 816 // Environmental and Societal Considerations 817 // 23.5 Recycling Issues in Materials Science and Engineering 819 Materials of Importance —Biodegradable and Biorenewable Polymers/Plastics 822 Summary 824 References 825 Design Questions 825 // Appendix A The International System of Units (SI) 826 // Appendix B Properties of Selected Engineering Materials 828 // B.l Density 828 // B.2 Modulus of Elasticity 831 // B.3 Poisson’s Ratio 835 // B.4 Strength and Ductility 836 // B.5 Plane Strain Fracture Toughness 841 // B.6 Linear Coefficient of Thermal // Expansion 843 // B.7 Thermal Conductivity 846 // B.8 Specific Heat 849 // B.9 Electrical Resistivity 852 // B.10 Metal Alloy Compositions 855 // Appendix C Costs and Relative Costs for Selected Engineering Materials 857 // Appendix D Repeat Unit Structures for Common Polymers 862 // Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials 866 // Glossary 867 // Answers to Selected Problems 880 Index 885

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC