Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 04.11.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2016
1 online resource (432 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783319390956 (electronic bk.)
ISBN 9783319390949
Print version: Ostachowicz, Wiesaw Mare-Wint Cham : Springer International Publishing AG,c2016 ISBN 9783319390949
Intro -- Acknowledgements -- The European Commission -- About MSCA -- About ITN -- The External Contributors -- The MARE-WINT Fellows and Project Partners -- References -- Contents -- 1 Introduction -- 1.1 The Emergent Offshore Wind Industry -- 1.1.1 The Benefits of Wind Energy -- 1.1.2 The Challenges of Going Offshore -- 1.2 An Introduction to the MARE-WINT Project -- 1.3 An Overview of the Current Research -- 1.3.1 The Components of a Wind Turbine -- 1.3.2 Designing a Wind Turbine -- 1.3.3 MARE-WINT’s Contribution to the Offshore Wind Industry -- 1.3.4 Contributions from External Authors -- References -- Part I Wind Turbine Blades -- 2 Design of Wind Turbine Blades -- 2.1 Rotor Blades as a Common Research Topic -- 2.2 General Background for WT Blades -- 2.3 Innovative Blade Concept -- 2.4 Operational Concept -- 2.5 Research and Development Work Supporting the Concept -- References -- 3 Damage Sensing in Blades -- 3.1 Introduction -- 3.2 Structural Damages in Wind Turbine Blades -- 3.3 SHM on Wind Turbine Blades -- 3.3.1 Modal Analysis -- 3.3.2 Fibre Optics -- 3.3.3 Guided Wave Technology -- 3.3.4 Acoustic Emission -- 3.3.5 Thermography -- 3.4 Guided Wave Technology in Composites -- 3.4.1 Fundamentals of Guided Waves -- 3.4.1.1 Phase Velocity and Group Velocity -- 3.4.1.2 Dispersion Curves -- 3.4.2 Guided Waves in Composites -- 3.4.2.1 Simulation -- 3.4.2.2 Damage Detection -- References -- 4 Fibre Bragg Grating as a Multi-Stage Structure Health Monitoring Sensor -- 4.1 Fibre Bragg Grating Sensors -- 4.2 Manufacturing Stage: Residual Stress Induced by Resin Shrinkage and Curing Process Control -- 4.2.1 Embedded FBG Response to Strain and Temperature Variation -- 4.2.2 Residual Stress Measurement -- 4.3 Operation Stage: Crack Growth Detection by Embedded FBG Sensors -- 4.3.1 Crack/Delamination Detection by Embedded Fibre Bragg Gratings.
12.3.2 Hydrodynamics -- 12.3.3 Structural Dynamics -- 12.3.4 Control System -- 12.3.5 Verification of the Fully Coupled Codes -- 12.4 Dynamic Response Characteristics of Three Floating VAWTs -- 12.5 Comparative Study of Floating HAWTs and VAWTs -- 12.5.1 Semi HAWT vs. Semi VAWT -- 12.5.2 Spar HAWT vs. Spar VAWT -- 12.6 Conclusions -- References -- 13 Bottom Fixed Substructure Analysis, Model Testing and Design for Harsh Environment -- 13.1 Introduction -- 13.2 Determination of Design Wave -- 13.3 Hydrodynamic Loads -- 13.4 Analytical and Empirical Formulations -- 13.4.1 Morison Equation -- 13.4.2 Higher Harmonic Forces -- 13.4.3 Impulse (Slam) Forces from Breaking Waves -- 13.5 Numerical Analysis -- 13.5.1 Star CCM++ -- 13.5.2 OceanWave3D: OpenFoam -- 13.6 Results -- 13.6.1 Stokes 5th Order -- 13.6.2 Breaking Wave -- 13.7 Conclusions -- References -- 14 Detection of Damage in Metallic Structures for Offshore Applications -- 14.1 Introduction -- 14.2 Methodology Overview -- 14.2.1 Neutral Axis -- 14.2.2 Damage Sensitive Feature -- 14.2.3 Bi-Axial NA tracking -- 14.2.4 Kalman Filter -- 14.3 Structure Modelling -- 14.3.1 DTU 10 MW RWT -- 14.3.2 Nordtank NTK 500/41 Wind Turbine -- 14.4 Numerical Simulations -- 14.4.1 Need for KF tracking -- 14.4.2 NA as a Damage Sensitive Feature -- 14.4.3 Bi-axial NA tracking -- 14.4.4 Robustness of KF -- 14.5 Validation -- 14.5.1 Need for KF Based NA Tracking -- 14.6 Conclusions -- References -- Part IV Reliability &amp -- Preventive Maintenance of Offshore Wind Turbines -- 15 Reliability and Preventive Maintenance -- Nomenclature -- Acronyms -- Definitions -- 15.1 Overview -- 15.2 Offshore Wind Turbine Configuration -- 15.3 Reliability Prediction -- 15.3.1 Definition and Assumptions -- 15.3.2 Reliability Prediction Data-Base -- 15.3.2.1 Reliawind Data-Base -- 15.3.2.2 Conversion Factor.
18 CFD Study of DTU 10MW RWT Aeroelasticity and Rotor-Tower Interactions.
References -- Part II Enabling Technologies for Drivetrain and Gearbox Analysis -- 8 OWT Drivetrain &amp -- Gearbox Simulation and Testing -- 8.1 Simulation and Testing in Drivetrain and Gearbox Design -- References -- 9 Dynamic Behavior of Bearings on Offshore Wind Turbine Gearboxes -- 9.1 Introduction -- 9.2 Bearings for Wind Turbine Applications -- 9.2.1 Rolling-Element Bearings: Basic Concepts -- 9.2.2 Contact Mechanics -- 9.2.3 Influence of the Lubricant Film -- 9.2.4 Durability -- 9.2.5 Non Torque Loading -- 9.3 Numerical Modelling of Bearings -- 9.3.1 Overview of State-of-the-Art Bearing Models -- 9.3.2 Two-Dimensional Bearing Models -- 9.3.3 Three-Dimensional Bearing Models -- 9.3.3.1 Ball Bearings -- 9.3.3.2 Roller Bearings -- 9.3.4 Bearings with Distributed Flexibility -- 9.4 Conclusions: Towards Unified Wind Turbine Gearbox Models -- References -- 10 Experimental Characterization of Wind Turbine Gearbox in Operation -- 10.1 Introduction and Motivation -- 10.2 Order Tracking Techniques -- 10.2.1 Time Domain Sampling-Based Fast Fourier Transform Order Tracking -- 10.2.2 Angle Domain Resampling Order Tracking -- 10.2.3 Time Varying Discrete Fourier Transform (TVDFT) -- 10.2.4 Vold-Kalman (VK) Filter-Based Order Tracking -- 10.3 Order-Based Modal Analysis -- 10.4 Dynamic Characterization of Operational Gearboxes -- 10.4.1 Operational Modal Analysis -- 10.4.2 Order-Based Modal Analysis -- 10.5 Conclusions -- References -- Part III Tower &amp -- Support Structure -- 11 An Overview of Analysis and Design of Offshore Wind Turbines -- 11.1 Introduction -- 11.2 Research Activities in the MARE-WINT Project -- 12 Dynamic Response Analysis of Floating Wind Turbines with Emphasis on Vertical Axis Rotors -- 12.1 Introduction -- 12.2 Typical Floating VAWT Concepts -- 12.3 Integrated Modeling of a Floating VAWT System -- 12.3.1 Aerodynamics.
12.3.2 Hydrodynamics -- 12.3.3 Structural Dynamics -- 12.3.4 Control System -- 12.3.5 Verification of the Fully Coupled Codes -- 12.4 Dynamic Response Characteristics of Three Floating VAWTs -- 12.5 Comparative Study of Floating HAWTs and VAWTs -- 12.5.1 Semi HAWT vs. Semi VAWT -- 12.5.2 Spar HAWT vs. Spar VAWT -- 12.6 Conclusions -- References -- 13 Bottom Fixed Substructure Analysis, Model Testing and Design for Harsh Environment -- 13.1 Introduction -- 13.2 Determination of Design Wave -- 13.3 Hydrodynamic Loads -- 13.4 Analytical and Empirical Formulations -- 13.4.1 Morison Equation -- 13.4.2 Higher Harmonic Forces -- 13.4.3 Impulse (Slam) Forces from Breaking Waves -- 13.5 Numerical Analysis -- 13.5.1 Star CCM++ -- 13.5.2 OceanWave3D: OpenFoam -- 13.6 Results -- 13.6.1 Stokes 5th Order -- 13.6.2 Breaking Wave -- 13.7 Conclusions -- References -- 14 Detection of Damage in Metallic Structures for Offshore Applications -- 14.1 Introduction -- 14.2 Methodology Overview -- 14.2.1 Neutral Axis -- 14.2.2 Damage Sensitive Feature -- 14.2.3 Bi-Axial NA tracking -- 14.2.4 Kalman Filter -- 14.3 Structure Modelling -- 14.3.1 DTU 10 MW RWT -- 14.3.2 Nordtank NTK 500/41 Wind Turbine -- 14.4 Numerical Simulations -- 14.4.1 Need for KF tracking -- 14.4.2 NA as a Damage Sensitive Feature -- 14.4.3 Bi-axial NA tracking -- 14.4.4 Robustness of KF -- 14.5 Validation -- 14.5.1 Need for KF Based NA Tracking -- 14.6 Conclusions -- References -- Part IV Reliability & -- Preventive Maintenance of Offshore Wind Turbines -- 15 Reliability and Preventive Maintenance -- Nomenclature -- Acronyms -- Definitions -- 15.1 Overview -- 15.2 Offshore Wind Turbine Configuration -- 15.3 Reliability Prediction -- 15.3.1 Definition and Assumptions -- 15.3.2 Reliability Prediction Data-Base -- 15.3.2.1 Reliawind Data-Base -- 15.3.2.2 Conversion Factor.
15.3.3 Reliability Prediction Results -- 15.4 Reliability Block Diagram -- 15.4.1 Definition and Assumptions -- 15.4.2 Inherent Availability -- 15.4.3 Reliability Block Diagram Results -- 15.5 Failure Mode, Effects and Criticality Analysis -- 15.5.1 Definition -- 15.5.2 Objectives -- 15.5.3 Method -- 15.5.4 Approach -- 15.5.5 Criticality -- 15.5.6 Process -- 15.5.7 Limitations -- 15.5.8 Results -- 15.5.8.1 Risk Matrix and Criticality Evaluation -- 15.5.8.2 Mode Criticalities at System Level -- 15.5.8.3 Risk Priority Number (RPN) -- 15.6 Preventive Maintenance (PM) -- 15.6.1 Definition -- 15.6.2 Preventive Maintenance Tasks Classification -- 15.6.2.1 Scheduled Tasks -- 15.6.2.2 On Condition Task -- 15.6.3 Significant Function Selection -- 15.6.3.1 Significant Function (SF) Logic -- 15.6.4 Task Evaluation -- 15.6.5 Task Selection -- 15.6.5.1 Cost -- 15.6.5.2 Operational Consequences -- 15.6.6 Packaging -- 15.6.7 Age Exploration (AE) -- 15.6.8 Repackaging -- 15.7 Conclusions -- References -- Part V CFD Analysis of a Complete Offshore Wind Turbine -- 16 An Overview of the CFD Analyses in the MARE-WINT Project -- 17 CFD Investigation of a Complete Floating OffshoreWind Turbine -- Nomenclature -- Latin -- Greek -- Acronyms -- 17.1 Motivation and Objectives -- 17.2 Numerical Methods -- 17.2.1 Validation of the Aerodynamic Solver -- 17.2.2 Validation of the Hydrodynamic Solver -- 17.2.3 Validation of Multi-body Dynamics Solver -- 17.2.4 Coupling Algorithms -- 17.2.5 Coupling Scheme and Its Implementation -- 17.3 Test Case Description -- 17.3.1 CFD Mesh -- 17.3.2 SPH Setup and Resolution -- 17.3.3 Initial Conditions -- 17.3.4 Demonstration Cases -- 17.4 Results and Discussion -- 17.4.1 Decoupled Case -- 17.4.2 Coupled Case -- 17.4.3 Computational Performance -- 17.5 Conclusions -- References.
4.3.1.1 Embedded FBG Response: Strain -- 4.3.1.2 Embedded FBG Response: Transverse Stress -- 4.3.1.3 Embedded FBG Response: Non-Uniform Strain -- 4.3.2 Delamination Detection in Fibre Reinforced Polymer Specimen Using Embedded FBG Sensor: Material and Testing Procedure -- 4.3.2.1 Experimental Results -- 4.4 Application of the FBG Crack Detection Method -- 4.5 Fibre Bragg Grating as a Multi-Stage Structure Health Monitoring Sensor: Published Work -- References -- 5 Analysis and Design of Bend-Twist Coupled WindTurbine Blades -- 5.1 Introduction -- 5.2 Analysis of Anisotropic Beams -- 5.2.1 Structural Properties of Anisotropic Beams -- 5.2.1.1 Shear Deformations -- 5.2.1.2 Torsional Warping -- 5.2.1.3 General Warping -- 5.2.1.4 Superelements -- 5.2.1.5 Large Displacements -- 5.2.1.6 Wind Turbine Blade Analysis -- 5.2.2 Anisotropic Cross-Sectional Properties -- 5.2.3 Timoshenko Beam Element with Anisotropic Cross-Sectional Properties -- 5.3 Design of Bend-Twist Coupled Blades -- 5.3.1 Pre-Twisting Procedure -- 5.3.2 Coupling Distribution -- 5.4 Summary -- References -- 6 Improvement of Wind Turbine Blade Performance by Means of Rod Vortex Generators -- 6.1 Introduction -- 6.2 Flow Solver -- 6.3 The NREL Phase VI Wind Turbine Rotor -- 6.3.1 Experimental Set-Up -- 6.3.2 Numerical Modelling -- 6.3.3 Numerical Results -- 6.4 The S809 Aerofoil (Clean Case) -- 6.5 The S809 Aerofoil (Flow Control Case) -- 6.5.1 Basic Configuration -- 6.5.2 RVGs Chordwise Location -- 6.5.3 RVGs Spanwise Separation -- 6.6 Conclusions -- References -- 7 Trailing and Leading Edge Flaps for Load Alleviation and Structure Control -- 7.1 Numerical Methods -- 7.2 Numerical Parameters -- 7.3 Mesh Convergence Study -- 7.4 Computational Grid -- 7.5 Definition of the Flaps -- 7.6 Results for the TE Flap -- 7.7 Results for the LE Flap -- 7.8 Comparison of the Performance -- 7.9 Summary.
References -- Part II Enabling Technologies for Drivetrain and Gearbox Analysis -- 8 OWT Drivetrain & -- Gearbox Simulation and Testing -- 8.1 Simulation and Testing in Drivetrain and Gearbox Design -- References -- 9 Dynamic Behavior of Bearings on Offshore Wind Turbine Gearboxes -- 9.1 Introduction -- 9.2 Bearings for Wind Turbine Applications -- 9.2.1 Rolling-Element Bearings: Basic Concepts -- 9.2.2 Contact Mechanics -- 9.2.3 Influence of the Lubricant Film -- 9.2.4 Durability -- 9.2.5 Non Torque Loading -- 9.3 Numerical Modelling of Bearings -- 9.3.1 Overview of State-of-the-Art Bearing Models -- 9.3.2 Two-Dimensional Bearing Models -- 9.3.3 Three-Dimensional Bearing Models -- 9.3.3.1 Ball Bearings -- 9.3.3.2 Roller Bearings -- 9.3.4 Bearings with Distributed Flexibility -- 9.4 Conclusions: Towards Unified Wind Turbine Gearbox Models -- References -- 10 Experimental Characterization of Wind Turbine Gearbox in Operation -- 10.1 Introduction and Motivation -- 10.2 Order Tracking Techniques -- 10.2.1 Time Domain Sampling-Based Fast Fourier Transform Order Tracking -- 10.2.2 Angle Domain Resampling Order Tracking -- 10.2.3 Time Varying Discrete Fourier Transform (TVDFT) -- 10.2.4 Vold-Kalman (VK) Filter-Based Order Tracking -- 10.3 Order-Based Modal Analysis -- 10.4 Dynamic Characterization of Operational Gearboxes -- 10.4.1 Operational Modal Analysis -- 10.4.2 Order-Based Modal Analysis -- 10.5 Conclusions -- References -- Part III Tower & -- Support Structure -- 11 An Overview of Analysis and Design of Offshore Wind Turbines -- 11.1 Introduction -- 11.2 Research Activities in the MARE-WINT Project -- 12 Dynamic Response Analysis of Floating Wind Turbines with Emphasis on Vertical Axis Rotors -- 12.1 Introduction -- 12.2 Typical Floating VAWT Concepts -- 12.3 Integrated Modeling of a Floating VAWT System -- 12.3.1 Aerodynamics.
001895058
express
(Au-PeEL)EBL6422618
(MiAaPQ)EBC6422618
(OCoLC)959934631

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC