Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2017
1 online resource (305 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783319398891 (electronic bk.)
ISBN 9783319398884
Ocean Engineering and Oceanography Ser. ; v.7
Print version: Pecher, Arthur Handbook of Ocean Wave Energy Cham : Springer International Publishing AG,c2017 ISBN 9783319398884
Intro -- Preface -- Contents -- Abbreviations -- Symbols -- 1 Introduction -- 1.1 Introduction -- 1.2 The Successful Product Innovation -- 1.3 Sketching WECs and Their Environment -- 1.4 Rules of Thumb for Wave Energy -- 1.4.1 The Essential Features of a WEC -- 1.4.2 Economic Rules of Thumb -- 1.4.3 WEC Design Rules of Thumb -- 1.4.4 Power Take-Off Rules of Thumb -- 1.4.5 Environmental Rules of Thumb -- References -- 2 The Wave Energy Sector -- 2.1 Introduction -- 2.2 Potential of Wave Energy -- 2.3 Wave Energy Converters -- 2.3.1 History -- 2.3.2 Categorization of WEC’s -- 2.3.3 Examples of Various WEC Types -- 2.3.3.1 Oscillating Water Column -- 2.3.3.2 Wave Activated Bodies -- 2.3.3.3 Overtopping Devices -- 2.3.4 The Development of WECs -- 2.4 Test Sites -- References -- 3 The Wave Energy Resource -- 3.1 Introduction to Ocean Waves -- 3.1.1 Origin of Ocean Waves -- 3.1.2 Overview of the Global Wave Energy Resource -- 3.2 Water Wave Mechanics -- 3.2.1 Definition and Symbols -- 3.2.2 Dispersion Relationship -- 3.2.3 Water Particle Path and Wave Motions -- 3.3 Characterisation of Ocean Waves and the Wave Climate -- 3.3.1 Introduction -- 3.3.2 Temporal, Directional and Spectral Characteristics of the Wave Climate -- 3.3.3 Spectral Representation of Ocean Waves -- 3.3.4 Characterization Parameters -- 3.3.5 Challenges in Wave Climate Characterisation -- 3.3.6 Coastal Processes -- 3.3.6.1 Shoaling -- 3.3.6.2 Refraction -- 3.3.6.3 Diffraction -- 3.3.6.4 Depth-Induced Wave Breaking -- 3.3.6.5 Bottom Friction -- 3.3.6.6 Wind Growth -- 3.3.7 Case Study-Incident Wave Power -- 3.4 Measurement of Ocean Waves -- 3.4.1 Overview -- 3.4.2 Surface-Following Buoy -- 3.4.3 Sea-Bed Pressure Sensor -- 3.4.4 Acoustic Current Profiler -- 3.4.5 Land-Based and Satellite Radar -- 3.5 Modelling of Ocean Waves -- 3.5.1 Introduction -- 3.5.2 General Spectral Wave Models.
3.5.3 Third Generation Spectral Wave Models -- 3.5.4 Grid Definition -- References -- 4 Techno-Economic Development of WECs -- 4.1 Introduction -- 4.1.1 Continuous Evaluation of the WEC Potential -- 4.1.2 Overview of the Techno-Economic Development -- 4.2 The WEC Development Stages -- 4.3 Techno-Economic Development Evaluation -- 4.3.1 The Technology Readiness and Performance Level -- 4.3.2 The WEC Development Stages and the TRL Scale -- 4.3.3 The TRL-TPL R& -- D Matrix -- 4.3.4 Uncertainty Related to the TRL-TPL Matrix -- 4.3.5 Valuation of R& -- D Companies -- 4.4 Techno-Economic Development Strategies -- 4.4.1 R& -- D Strategy as TRL-TPL Trajectories -- 4.4.2 Extreme Cases of Techno-Economic Development Strategy -- 4.4.3 Efficient Techno-Economic Development -- 4.5 Conclusion -- 4.6 Overview of Some of the Leading WECs -- References -- 5 Economics of WECs -- 5.1 Introduction -- 5.2 Power Is Vanity-Energy Is Sanity -- 5.3 Economic Decision Making -- 5.3.1 Cash Flow Terminology -- 5.3.2 Time Value of Money (and Energy) -- 5.3.3 Economic Metrics -- 5.3.4 Effect of Depreciation on Discounting -- 5.3.5 Effect of Inflation on Discounting -- 5.3.6 Setting the Discount Rate -- 5.3.7 Economic Decision Making-Which Metric to Use? -- 5.3.8 Expert Oversight and Independent Review -- 5.4 Economic Analysis in Technology R& -- D -- 5.5 Techno-Economic Assessment and Optimisation -- 5.6 WEC Cost-of-Energy Estimation Based on Offshore Wind Energy Farm Experience -- 5.6.1 Introduction -- 5.6.2 Definition of the Categories -- 5.6.3 Wind Energy Project Case -- 5.6.3.1 Introduction -- 5.6.3.2 Categories Cost Breakdown -- 5.6.3.3 Levelized Cost of Energy Estimation -- 5.6.4 Wave Energy Case -- 5.6.4.1 Introduction -- 5.6.4.2 Category: Development and Consent -- 5.6.4.3 Category: Wave Energy Converter -- 5.6.4.4 Category: Balance of Plant.
7.3.3.2 First-Order Wave Forces -- Overview -- Wave Forces on "Small" Bodies D  lessthan  L/4 -- Wave Forces in a Regular Wave (Small Body) -- Wave Forces in Irregular Waves (Small Body) -- Wave Forces on "Large" Bodies -- Overview -- Wave Forces in Irregular Waves (Large Body) -- 7.3.4 Summary of Environmental Forces on Buoy -- 7.4 Mooring System Static Properties -- 7.4.1 Example -- 7.4.2 Catenary Equations -- 7.4.3 Mean Excursion -- 7.5 Alternative Design Procedures -- 7.5.1 Quasi-Static Design -- 7.5.1.1 Quasi-Static Design Procedure -- 7.5.1.2 Safety Factors -- First Design Loop -- Second Design Loop -- 7.5.2 Dynamic Design -- 7.5.2.1 Dynamic Design Using Uncoupled Mooring Cable Dynamics -- 7.5.2.2 Coupled Analysis -- 7.5.2.3 Coupled Analyses with Potential or CFD Simulations -- 7.5.3 Response-Based Analysis -- 7.6 Response Motion of the Moored Structure -- 7.6.1 Equation of Motion -- 7.6.2 Free Vibration of a Floating Buoy in Surge -- 7.6.3 Response to Harmonic Forces -- 7.6.4 Response Motion in Irregular Waves -- 7.6.4.1 Morison Mass Approach -- 7.6.4.2 Diffraction Force Approach -- 7.6.5 Equivalent Linearized Drag Damping -- 7.6.6 Second-Order Slowly Varying Motion -- 7.6.7 Wave Drift Damping -- 7.6.8 Combined Maximum Excursions -- 7.7 Conclusions -- Acknowledgments -- References -- 8 Power Take-Off Systems for WECs -- 8.1 Introduction, Importance and Challenges -- 8.2 Types of Power Take-Off System -- 8.2.1 Overview -- 8.2.2 Air Turbines -- 8.2.3 Hydraulic Converters -- 8.2.4 Hydro Turbines -- 8.2.5 Direct Mechanical Drive Systems -- 8.2.6 Direct Electrical Drive Systems -- 8.2.7 Alternative PTO Systems -- 8.3 Control Strategy of Power Take-Off System -- 8.3.1 Introduction -- 8.3.2 Types of Control Strategy -- 8.3.2.1 Passive Loading Control -- 8.3.2.2 Latching Control -- 8.3.2.3 Reactive Loading Control -- 8.4 Conclusion -- References.
3.5.3 Third Generation Spectral Wave Models -- 3.5.4 Grid Definition -- References -- 4 Techno-Economic Development of WECs -- 4.1 Introduction -- 4.1.1 Continuous Evaluation of the WEC Potential -- 4.1.2 Overview of the Techno-Economic Development -- 4.2 The WEC Development Stages -- 4.3 Techno-Economic Development Evaluation -- 4.3.1 The Technology Readiness and Performance Level -- 4.3.2 The WEC Development Stages and the TRL Scale -- 4.3.3 The TRL-TPL R& -- D Matrix -- 4.3.4 Uncertainty Related to the TRL-TPL Matrix -- 4.3.5 Valuation of R& -- D Companies -- 4.4 Techno-Economic Development Strategies -- 4.4.1 R& -- D Strategy as TRL-TPL Trajectories -- 4.4.2 Extreme Cases of Techno-Economic Development Strategy -- 4.4.3 Efficient Techno-Economic Development -- 4.5 Conclusion -- 4.6 Overview of Some of the Leading WECs -- References -- 5 Economics of WECs -- 5.1 Introduction -- 5.2 Power Is Vanity-Energy Is Sanity -- 5.3 Economic Decision Making -- 5.3.1 Cash Flow Terminology -- 5.3.2 Time Value of Money (and Energy) -- 5.3.3 Economic Metrics -- 5.3.4 Effect of Depreciation on Discounting -- 5.3.5 Effect of Inflation on Discounting -- 5.3.6 Setting the Discount Rate -- 5.3.7 Economic Decision Making-Which Metric to Use? -- 5.3.8 Expert Oversight and Independent Review -- 5.4 Economic Analysis in Technology R& -- D -- 5.5 Techno-Economic Assessment and Optimisation -- 5.6 WEC Cost-of-Energy Estimation Based on Offshore Wind Energy Farm Experience -- 5.6.1 Introduction -- 5.6.2 Definition of the Categories -- 5.6.3 Wind Energy Project Case -- 5.6.3.1 Introduction -- 5.6.3.2 Categories Cost Breakdown -- 5.6.3.3 Levelized Cost of Energy Estimation -- 5.6.4 Wave Energy Case -- 5.6.4.1 Introduction -- 5.6.4.2 Category: Development and Consent -- 5.6.4.3 Category: Wave Energy Converter -- 5.6.4.4 Category: Balance of Plant.
5.6.4.5 Category: Installation and Commissioning -- 5.6.4.6 Category: Operation and Maintenance (OpEx) -- 5.6.4.7 Overview and Levelized Cost of Energy Estimation -- 5.6.5 Cost Reduction -- 5.6.6 Revenue and Energy Yield -- 5.7 Strategic Support Mechanisms -- References -- 6 Hydrodynamics of WECs -- 6.1 Introduction -- 6.1.1 Wave Energy Absorption is Wave Interference -- 6.1.2 Hydrostatics: Buoyancy and Stability -- 6.1.3 Hydrodynamic Forces and Body Motions -- 6.1.3.1 Excitation and Radiation Forces-Added Mass and Radiation Resistance -- 6.1.3.2 Machinery Forces -- 6.1.3.3 Drag Forces -- 6.1.3.4 Wave Drift, Current and Mooring Forces -- 6.1.4 Resonance -- 6.1.5 Oscillating Water Columns-Comments on Resonance Properties and Modelling -- 6.1.6 Hydrodynamic Design of a Wave Energy Converter -- 6.1.6.1 Size and Shape -- 6.1.6.2 Heave, Surge or Pitch? -- 6.1.6.3 Some Examples -- 6.1.6.4 Comments on Alternative Principles of Power Extraction -- 6.1.7 Power Estimates and Limits to the Absorbed Power -- 6.1.8 Controlled Motion and Maximisation of Output Power -- References -- 7 Mooring Design for WECs -- 7.1 Introduction -- 7.1.1 General -- 7.1.2 Mooring Design Development Overview -- 7.1.3 Wave-Induced Forces on Structures -- 7.1.4 Motions of a Moored Device in Waves -- 7.2 Metocean Conditions -- 7.2.1 Combinations of Environmental Conditions -- 7.2.2 Design Wave Conditions -- 7.2.3 Environmental Data at DanWEC -- 7.2.4 Example Design Conditions -- 7.3 Estimation of Environmental Forces -- 7.3.1 Overview and Example Floater Properties -- 7.3.2 Mean Wind and Current Forces -- 7.3.2.1 Introduction -- 7.3.2.2 Wind Force on the Sample Floater -- 7.3.2.3 Current Force on the Sample Floater -- 7.3.3 Wave Forces -- 7.3.3.1 Mean Wave Drift Force -- Mean Wave Drift Force in Regular Waves, Simplified Approach -- Mean Wave Drift Force in Irregular Waves.
7.3.3.2 First-Order Wave Forces -- Overview -- Wave Forces on "Small" Bodies D  lessthan  L/4 -- Wave Forces in a Regular Wave (Small Body) -- Wave Forces in Irregular Waves (Small Body) -- Wave Forces on "Large" Bodies -- Overview -- Wave Forces in Irregular Waves (Large Body) -- 7.3.4 Summary of Environmental Forces on Buoy -- 7.4 Mooring System Static Properties -- 7.4.1 Example -- 7.4.2 Catenary Equations -- 7.4.3 Mean Excursion -- 7.5 Alternative Design Procedures -- 7.5.1 Quasi-Static Design -- 7.5.1.1 Quasi-Static Design Procedure -- 7.5.1.2 Safety Factors -- First Design Loop -- Second Design Loop -- 7.5.2 Dynamic Design -- 7.5.2.1 Dynamic Design Using Uncoupled Mooring Cable Dynamics -- 7.5.2.2 Coupled Analysis -- 7.5.2.3 Coupled Analyses with Potential or CFD Simulations -- 7.5.3 Response-Based Analysis -- 7.6 Response Motion of the Moored Structure -- 7.6.1 Equation of Motion -- 7.6.2 Free Vibration of a Floating Buoy in Surge -- 7.6.3 Response to Harmonic Forces -- 7.6.4 Response Motion in Irregular Waves -- 7.6.4.1 Morison Mass Approach -- 7.6.4.2 Diffraction Force Approach -- 7.6.5 Equivalent Linearized Drag Damping -- 7.6.6 Second-Order Slowly Varying Motion -- 7.6.7 Wave Drift Damping -- 7.6.8 Combined Maximum Excursions -- 7.7 Conclusions -- Acknowledgments -- References -- 8 Power Take-Off Systems for WECs -- 8.1 Introduction, Importance and Challenges -- 8.2 Types of Power Take-Off System -- 8.2.1 Overview -- 8.2.2 Air Turbines -- 8.2.3 Hydraulic Converters -- 8.2.4 Hydro Turbines -- 8.2.5 Direct Mechanical Drive Systems -- 8.2.6 Direct Electrical Drive Systems -- 8.2.7 Alternative PTO Systems -- 8.3 Control Strategy of Power Take-Off System -- 8.3.1 Introduction -- 8.3.2 Types of Control Strategy -- 8.3.2.1 Passive Loading Control -- 8.3.2.2 Latching Control -- 8.3.2.3 Reactive Loading Control -- 8.4 Conclusion -- References.
9 Experimental Testing and Evaluation of WECs -- 9.1 Overview -- 9.2 Tank Testing -- 9.2.1 Overview -- 9.2.2 Representative Sea States -- 9.2.2.1 Operational Sea States -- 9.2.2.2 Design Sea States -- 9.2.3 Hydrodynamic Response -- 9.2.3.1 Natural Period -- 9.2.3.2 Response Amplitude Operators -- 9.2.4 Power Performance Evaluation -- 9.2.4.1 Introduction -- 9.2.4.2 Power Performance Estimation Based on Sea States -- 9.2.4.3 Power Performance Estimation Based on the Scatter Diagram -- 9.2.4.4 Testing Procedure for Power Performance Analysis -- 9.2.5 Scaling -- 9.2.5.1 Defining the Scaling Ratio -- 9.2.5.2 Scaling Law -- 9.2.5.3 Optimising the Scaling Ratio -- 9.2.6 Structural and Mooring Loads -- 9.2.6.1 Introduction -- 9.2.6.2 Mooring Forces -- 9.2.6.3 Structural Design and PTO Loads -- 9.2.7 Parametric Study -- 9.2.7.1 Physical Alterations to the Model -- 9.2.7.2 Modification of Wave Parameters -- 9.3 Sea Trials -- 9.3.1 Introduction -- 9.3.2 Performance Assessment of WECs Based on Sea Trials -- 9.3.2.1 Introduction -- 9.3.2.2 Preparing the Environmental and Performance Data -- 9.3.2.3 Scaling of the Performance Data -- 9.3.2.4 Categorising the Data -- 9.3.2.5 Complementing the Performance Data -- 9.3.2.6 Estimating the MAEP -- References -- 10 Wave-to-Wire Modelling of WECs -- 10.1 Introduction -- 10.2 Wave-to-Wire Models -- 10.2.1 Equation of Motion -- 10.2.2 Excitation Force -- 10.2.3 Hydrostatic Force -- 10.2.4 Mooring Loads -- 10.2.5 Radiation Force -- 10.2.6 PTO Force -- 10.2.7 End Stops Mechanism -- 10.3 Benchmark Analysis -- 10.4 Radiation/Diffraction Codes -- 10.5 Conclusion -- References -- 11 Erratum to: Handbook of Ocean Wave Energy -- Erratum to:& -- #6 -- A. Pecher and J.P. Kofoed (eds.), Handbook of Ocean Wave Energy, Ocean Engineering & -- Oceanography 7, DOI 10.1007/978-3-319-39889-1.
001895094
express
(Au-PeEL)EBL6422664
(MiAaPQ)EBC6422664
(OCoLC)1159388558

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC