Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
3rd ed.
Cham : Springer International Publishing AG, 2017
1 online resource (910 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783319444314 (electronic bk.)
ISBN 9783319444291
Astronomy and Astrophysics Library
Print version: Thompson, A. Richard Interferometry and Synthesis in Radio Astronomy Cham : Springer International Publishing AG,c2017 ISBN 9783319444291
Intro -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Abbreviations and Acronyms -- Principal Symbols -- 1 Introduction and Historical Review -- 1.1 Applications of Radio Interferometry -- 1.2 Basic Terms and Definitions -- 1.2.1 Cosmic Signals -- 1.2.2 Source Positions and Nomenclature -- 1.2.3 Reception of Cosmic Signals -- 1.3 Development of Radio Interferometry -- 1.3.1 Evolution of Synthesis Techniques -- 1.3.2 Michelson Interferometer -- 1.3.3 Early Two-Element Radio Interferometers -- 1.3.4 Sea Interferometer -- 1.3.5 Phase-Switching Interferometer -- 1.3.6 Optical Identifications and Calibration Sources -- 1.3.7 Early Measurements of Angular Width -- 1.3.8 Early Survey Interferometers and the Mills Cross -- 1.3.9 Centimeter-Wavelength Solar Imaging -- 1.3.10 Measurements of Intensity Profiles -- 1.3.11 Spectral Line Interferometry -- 1.3.12 Earth-Rotation Synthesis Imaging -- 1.3.13 Development of Synthesis Arrays -- 1.3.14 Very-Long-Baseline Interferometry -- 1.3.15 VLBI Using Orbiting Antennas -- 1.4 Quantum Effect -- Appendix 1.1 Sensitivity of Radio Astronomical Receivers (the Radiometer Equation) -- Further Reading -- Textbooks on Radio Astronomy and Radio Interferometry -- Historical Reviews -- General Interest -- References -- 2 Introductory Theory of Interferometry and Synthesis Imaging -- 2.1 Planar Analysis -- 2.2 Effect of Bandwidth -- 2.3 One-Dimensional Source Synthesis -- 2.3.1 Interferometer Response as a Convolution -- 2.3.2 Convolution Theorem and Spatial Frequency -- 2.3.3 Example of One-Dimensional Synthesis -- 2.4 Two-Dimensional Synthesis -- 2.4.1 Projection-Slice Theorem -- 2.4.2 Three-Dimensional Imaging -- Appendix 2.1 A Practical Fourier Transform Primer -- A2.1.1 Useful Fourier Transform Pairs -- A2.1.2 Basic Fourier Transform Properties.
5.4.1 Desirable Characteristics of the Spatial Transfer Function -- 5.4.2 Holes in the Spatial Frequency Coverage -- 5.5 Linear Tracking Arrays -- 5.6 Two-Dimensional Tracking Arrays -- 5.6.1 Open-Ended Configurations -- 5.6.2 Closed Configurations -- 5.6.3 VLBI Configurations -- 5.6.4 Orbiting VLBI Antennas -- 5.6.5 Planar Arrays -- 5.6.6 Some Conclusions on Antenna Configurations -- 5.7 Implementation of Large Arrays -- 5.7.1 Low-Frequency Range -- 5.7.2 Midfrequency and Higher Ranges -- 5.7.2.1 Phased-Array Feeds -- 5.7.2.2 Optimum Antenna Size -- 5.7.3 Development of Extremely Large Arrays -- 5.7.4 The Direct Fourier Transform Telescope -- Further Reading -- References -- 6 Response of the Receiving System -- 6.1 Frequency Conversion, Fringe Rotation,and Complex Correlators -- 6.1.1 Frequency Conversion -- 6.1.2 Response of a Single-Sideband System -- 6.1.3 Upper-Sideband Reception -- 6.1.4 Lower-Sideband Reception -- 6.1.5 Multiple Frequency Conversions -- 6.1.6 Delay Tracking and Fringe Rotation -- 6.1.7 Simple and Complex Correlators -- 6.1.8 Response of a Double-Sideband System -- 6.1.9 Double-Sideband System with Multiple Frequency Conversions -- 6.1.10 Fringe Stopping in a Double-Sideband System -- 6.1.11 Relative Advantages of Double- and Single-Sideband Systems -- 6.1.12 Sideband Separation -- 6.2 Response to the Noise -- 6.2.1 Signal and Noise Processing in the Correlator -- 6.2.2 Noise in the Measurement of Complex Visibility -- 6.2.3 Signal-to-Noise Ratio in a Synthesized Image -- 6.2.4 Noise in Visibility Amplitude and Phase -- 6.2.5 Relative Sensitivities of Different Interferometer Systems -- 6.2.6 System Temperature Parameter a -- 6.3 Effect of Bandwidth -- 6.3.1 Imaging in the Continuum Mode -- 6.3.2 Wide-Field Imaging with a Multichannel System -- 6.4 Effect of Visibility Averaging -- 6.4.1 Visibility Averaging Time.
8.1 Bivariate Gaussian Probability Distribution -- 8.2 Periodic Sampling -- 8.2.1 Nyquist Rate -- 8.2.2 Correlation of Sampled but UnquantizedWaveforms -- 8.3 Sampling with Quantization -- 8.3.1 Two-Level Quantization -- 8.3.2 Four-Level Quantization -- 8.3.3 Three-Level Quantization -- 8.3.4 Quantization Efficiency: Simplified Analysis for Four or More Levels -- 8.3.5 Quantization Efficiency: Full Analysis, Three or More Levels -- 8.3.6 Correlation Estimates for Strong Sources -- 8.4 Further Effects of Quantization -- 8.4.1 Correlation Coefficient for Quantized Data -- 8.4.2 Oversampling -- 8.4.3 Quantization Levels and Data Processing -- 8.5 Accuracy in Digital Sampling -- 8.5.1 Tolerances in Digital Sampling Levels -- 8.6 Digital Delay Circuits -- 8.7 Quadrature Phase Shift of a Digital Signal -- 8.8 Digital Correlators -- 8.8.1 Correlators for Continuum Observations -- 8.8.2 Digital Spectral Line Measurements -- 8.8.3 Lag (XF) Correlator -- 8.8.4 FX Correlator -- 8.8.5 Comparison of XF and FX Correlators -- 8.8.6 Hybrid Correlator -- 8.8.7 Demultiplexing in Broadband Correlators -- 8.8.8 Examples of Bandwidths and Bit DataQuantization -- 8.8.9 Polyphase Filter Banks -- 8.8.10 Software Correlators -- Appendix 8.1 Evaluation of ∞q=1R2∞(qxs) -- Appendix 8.2 Probability Integral for Two-Level Quantization -- Appendix 8.3 Optimal Performance for Four-Level Quantization -- Appendix 8.4 Introduction to the Discrete Fourier Transform -- A8.4.1 Response to a Complex Sine Wave -- A8.4.2 Padding with Zeros -- Further Reading -- References -- 9 Very-Long-Baseline Interferometry -- 9.1 Early Development -- 9.2 Differences Between VLBI and Conventional Interferometry -- 9.2.1 The Problem of Field of View -- 9.3 Basic Performance of a VLBI System -- 9.3.1 Time and Frequency Errors -- 9.3.2 Retarded Baselines -- 9.3.3 Noise in VLBI Observations.
A2.1.3 Two-Dimensional Fourier Transform -- A2.1.4 Fourier Series -- A2.1.5 Truncated Functions -- References -- 3 Analysis of the Interferometer Response -- 3.1 Fourier Transform Relationship Between Intensityand Visibility -- 3.1.1 General Case -- 3.1.2 East-West Linear Arrays -- 3.2 Cross-Correlation and the Wiener-Khinchin Relation -- 3.3 Basic Response of the Receiving System -- 3.3.1 Antennas -- 3.3.2 Filters -- 3.3.3 Correlator -- 3.3.4 Response to the Incident Radiation -- Appendix 3.1 Mathematical Representation of Noiselike Signals -- A3.1.1 Analytic Signal -- A3.1.2 Truncated Function -- References -- 4 Geometrical Relationships, Polarimetry, and the Interferometer Measurement Equation -- 4.1 Antenna Spacing Coordinates and (u,v) Loci -- 4.2 (u’,v’) Plane -- 4.3 Fringe Frequency -- 4.4 Visibility Frequencies -- 4.5 Calibration of the Baseline -- 4.6 Antennas -- 4.6.1 Antenna Mounts -- 4.6.2 Beamwidth and Beam-Shape Effects -- 4.7 Polarimetry -- 4.7.1 Antenna Polarization Ellipse -- 4.7.2 Stokes Visibilities -- 4.7.3 Instrumental Polarization -- 4.7.4 Matrix Formulation -- 4.7.5 Calibration of Instrumental Polarization -- 4.8 The Interferometer Measurement Equation -- 4.8.1 Multibaseline Formulation -- Appendix 4.1 Hour Angle-Declination and Elevation-Azimuth Relationships -- Appendix 4.2 Leakage Parameters in Terms of the Polarization Ellipse -- A4.2.1 Linear Polarization -- A4.2.2 Circular Polarization -- References -- 5 Antennas and Arrays -- 5.1 Antennas -- 5.2 Sampling the Visibility Function -- 5.2.1 Sampling Theorem -- 5.2.2 Discrete Two-Dimensional Fourier Transform -- 5.3 Introductory Discussion of Arrays -- 5.3.1 Phased Arrays and Correlator Arrays -- 5.3.2 Spatial Sensitivity and the Spatial TransferFunction -- 5.3.3 Meter-Wavelength Cross and T-Shaped Arrays -- 5.4 Spatial Transfer Function of a Tracking Array.
6.4.2 Effect of Time Averaging -- 6.5 Speed of Surveying -- Appendix 6.1 Partial Rejection of a Sideband -- References -- 7 System Design -- 7.1 Principal Subsystems of the Receiving Electronics -- 7.1.1 Low-Noise Input Stages -- 7.1.2 Noise Temperature Measurement -- 7.1.3 Local Oscillator -- 7.1.4 IF and Signal Transmission Subsystems -- 7.1.5 Optical Fiber Transmission -- 7.1.6 Delay and Correlator Subsystems -- 7.2 Local Oscillator and General Considerationsof Phase Stability -- 7.2.1 Round-Trip Phase Measurement Schemes -- 7.2.2 Swarup and Yang System -- 7.2.3 Frequency-Offset Round-Trip System -- 7.2.4 Automatic Correction System -- 7.2.5 Fiberoptic Transmission of LO Signals -- 7.2.6 Phase-Locked Loops and Reference Frequencies -- 7.2.7 Phase Stability of Filters -- 7.2.8 Effect of Phase Errors -- 7.3 Frequency Responses of the Signal Channels -- 7.3.1 Optimum Response -- 7.3.2 Tolerances on Variation of the Frequency Response: Degradation of Sensitivity -- 7.3.3 Tolerances on Variation of the Frequency Response: Gain Errors -- 7.3.4 Delay and Phase Errors in Single- and Double-Sideband Systems -- 7.3.5 Delay Errors and Tolerances -- 7.3.6 Phase Errors and Degradation of Sensitivity -- 7.3.7 Other Methods of Mitigation of Delay Errors -- 7.3.8 Multichannel (Spectral Line) Correlator Systems -- 7.3.9 Double-Sideband Systems -- 7.4 Polarization Mismatch Errors -- 7.5 Phase Switching -- 7.5.1 Reduction of Response to Spurious Signals -- 7.5.2 Implementation of Phase Switching -- 7.5.3 Timing Accuracy in Phase Switching -- 7.5.4 Interaction of Phase Switching with Fringe Rotation and Delay Adjustment -- 7.6 Automatic Level Control and Gain Calibration -- 7.7 Fringe Rotation -- Appendix 7.1 Sideband-Separating Mixers -- Appendix 7.2 Dispersion in Optical Fiber -- Appendix 7.3 Alias Sampling -- References -- 8 Digital Signal Processing.
8.1 Bivariate Gaussian Probability Distribution -- 8.2 Periodic Sampling -- 8.2.1 Nyquist Rate -- 8.2.2 Correlation of Sampled but UnquantizedWaveforms -- 8.3 Sampling with Quantization -- 8.3.1 Two-Level Quantization -- 8.3.2 Four-Level Quantization -- 8.3.3 Three-Level Quantization -- 8.3.4 Quantization Efficiency: Simplified Analysis for Four or More Levels -- 8.3.5 Quantization Efficiency: Full Analysis, Three or More Levels -- 8.3.6 Correlation Estimates for Strong Sources -- 8.4 Further Effects of Quantization -- 8.4.1 Correlation Coefficient for Quantized Data -- 8.4.2 Oversampling -- 8.4.3 Quantization Levels and Data Processing -- 8.5 Accuracy in Digital Sampling -- 8.5.1 Tolerances in Digital Sampling Levels -- 8.6 Digital Delay Circuits -- 8.7 Quadrature Phase Shift of a Digital Signal -- 8.8 Digital Correlators -- 8.8.1 Correlators for Continuum Observations -- 8.8.2 Digital Spectral Line Measurements -- 8.8.3 Lag (XF) Correlator -- 8.8.4 FX Correlator -- 8.8.5 Comparison of XF and FX Correlators -- 8.8.6 Hybrid Correlator -- 8.8.7 Demultiplexing in Broadband Correlators -- 8.8.8 Examples of Bandwidths and Bit DataQuantization -- 8.8.9 Polyphase Filter Banks -- 8.8.10 Software Correlators -- Appendix 8.1 Evaluation of ∞q=1R2∞(qxs) -- Appendix 8.2 Probability Integral for Two-Level Quantization -- Appendix 8.3 Optimal Performance for Four-Level Quantization -- Appendix 8.4 Introduction to the Discrete Fourier Transform -- A8.4.1 Response to a Complex Sine Wave -- A8.4.2 Padding with Zeros -- Further Reading -- References -- 9 Very-Long-Baseline Interferometry -- 9.1 Early Development -- 9.2 Differences Between VLBI and Conventional Interferometry -- 9.2.1 The Problem of Field of View -- 9.3 Basic Performance of a VLBI System -- 9.3.1 Time and Frequency Errors -- 9.3.2 Retarded Baselines -- 9.3.3 Noise in VLBI Observations.
9.3.4 Probability of Error in the Signal Search.
001895101
express
(Au-PeEL)EBL6422671
(MiAaPQ)EBC6422671
(OCoLC)976041211

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC