Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Singapore : Springer Singapore Pte. Limited, 2017
1 online resource (322 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9789811049569 (electronic bk.)
ISBN 9789811049552
Print version: Sekimura, Toshio Diversity and Evolution of Butterfly Wing Patterns Singapore : Springer Singapore Pte. Limited,c2017 ISBN 9789811049552
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Contributors -- Part I: The Nympalid Groundplan (NGP) and Diversification -- Chapter 1: The Common Developmental Origin of Eyespots and Parafocal Elements and a New Model Mechanism for Color Pattern Form... -- 1.1 Introduction -- 1.2 Eyespots and Parafocal Elements -- 1.3 Puzzling Results of Temperature Shock Experiments -- 1.4 Models of Color Pattern Formation -- 1.5 The Grass-Fire Model -- 1.6 Basic Patterns -- 1.7 Venous and Intervenous Patterns -- 1.8 Simulation of Notch and Distal-Less Progression -- 1.9 Shape of the Parafocal Elements -- 1.10 Fusion and Separation of Ocelli and Parafocal Elements -- 1.11 Modes of Pattern Evolution -- References -- Chapter 2: Exploring Color Pattern Diversification in Early Lineages of Satyrinae (Nymphalidae) -- 2.1 Introduction -- 2.2 Central Symmetry System Dislocations in Forewing and Hind Wing -- 2.3 Variation in Ventral Hind Wing Ocelli -- 2.4 The Color Band Between Elements f and g -- 2.5 Sexual Dimorphism and Mimicry -- 2.6 Transparency -- 2.7 Concluding Remarks -- Appendix: List of Examined Taxa -- References -- Chapter 3: Camouflage Variations on a Theme of the Nymphalid Ground Plan -- 3.1 Introduction -- 3.2 Morphological Foundations of the Nymphalid Ground Plan -- 3.3 Evolutionary Path: Gradual Evolutionary Steps Toward Leaf Vein-Like Patterns -- 3.4 Tinkering: The Flexible Building Logic of Leaf Vein-Like Patterns -- 3.5 Modularity: Developmental Modules of the NGP and a Simple Cryptic Pattern -- 3.6 Evolutionary Origin of De Novo Modules: Rewiring of the NGP Developmental Modules to Generate Functional Modules -- 3.7 Next Research Programs -- 3.7.1 Macroevolutionary Pathways Toward Camouflage Patterns -- 3.7.2 Macro-evolvability of the NGP -- 3.7.3 Body plan Character Map: Genetic and Developmental Architectures of the NGP.
12.2.1 Observation of Temporal Change in the Population of the Mimetic Female of P. polytes in Miyako-jima Island -- 12.2.2 Variation in the Relative Abundance (RA) in Sakishima Islands -- 12.3 Extended Mathematical Model for Population Dynamics of P. polytes -- 12.3.1 Fundamental Facts on the Mimicry of P. polytes -- 12.3.1.1 Difference in Predation Risk Between Two Forms f. polytes and f. cyrus -- 12.3.1.2 Males Prefer the Non-mimic f. cyrus to the Mimic f. polytes? -- 12.3.1.3 Physiological Life Span of Two Forms f. cyrus and f. polytes -- 12.3.2 Mathematical Model of Three ODEs for Population Dynamics of P. polytes with Intraspecific Competition -- 12.4 Mathematical Analysis of the System Equations and Computer Simulations -- 12.4.1 Mathematical Analysis -- 12.4.1.1 Case 1: r2&lt -- r3 and beta2=beta3(=beta) -- 12.4.1.2 Case 2: r2=r3 and beta2&gt -- beta3 -- 12.4.1.3 Case 3: r2=r3 and beta2=beta3(=beta) -- 12.5 Summary and Discussions -- References -- Chapter 13: Evolutionary Trends in Phenotypic Elements of Seasonal Forms of the Tribe Junoniini (Lepidoptera: Nymphalidae) -- 13.1 Introduction -- 13.2 Methods -- 13.3 Results -- 13.3.1 Variation by Pattern Element -- 13.3.2 Variation by Wing Cell -- 13.3.3 Seasonal Eyespot Variation by Clade -- 13.3.4 Seasonal Forewing Apex Shape Change by Clade -- 13.3.5 Shape Type and Shape Change -- 13.3.6 Discussion -- References -- Chapter 14: Estimating the Mating Success of Male Butterflies in the Field -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Source of Animals Used -- 14.2.2 Examination of Reproductive Tracts of Virgin and Mated Males -- 14.2.3 Estimation of Recent Mating Success of Field-Caught Male -- 14.2.4 Spectral Analyses of Iridescent Wing Areas -- 14.3 Results -- 14.3.1 Virgin Male Reproductive Tract -- 14.3.2 Reproductive Tract of Males Immediately After Mating.
7.2 Self-Similarity in Plants and Animals -- 7.3 Part I: Color Pattern Rules -- 7.3.1 Symmetry in Butterfly Wing Color Patterns -- 7.3.2 The Core-Paracore Rule and Self-Similarity Rule -- 7.3.3 The Border Symmetry System and Its Self-Similarity -- 7.3.4 Eyespot Pattern Rules: The Binary Rule and Inside-Wide Rule -- 7.3.5 Eyespot Pattern Rules: The Uncoupling Rule and Midline Rule -- 7.4 Part II: Formal Models toward the Induction Model -- 7.4.1 Four Steps for Color Pattern Formation as a Starting Frame -- 7.4.2 Gradient Model for Positional Information -- 7.4.3 Transient Models for TS-Type Modifications and Parafocal Elements -- 7.4.4 Heterochronic Uncoupling Model for TS-Type Changes -- 7.5 Part III: Induction Model -- 7.5.1 An Overview -- 7.5.2 Early and Late Stages -- 7.5.3 Settlement Mechanisms -- 7.5.4 Mechanisms for Self-Similarity -- 7.5.5 Reality Check -- 7.6 Part IV: Ploidy, Calcium Waves, and Physical Distortions -- 7.6.1 Scale Size of Elements -- 7.6.2 Ploidy Hypothesis -- 7.6.3 Calcium Waves -- 7.6.4 Physical Distortion Hypothesis -- 7.6.5 Damage-Induced Ectopic Elements -- 7.6.6 Focal Damage -- 7.7 Part V: Generalization and Essence -- 7.7.1 Reinforced Version of the Induction Model -- 7.7.2 Generalization to Other Systems -- 7.7.3 DCG Cycle for Self-Similarity and Its Implications -- References -- Part III: Developmental Genetics -- Chapter 8: A Practical Guide to CRISPR/Cas9 Genome Editing in Lepidoptera -- 8.1 Introduction -- 8.2 Published Examples of Cas9-Mediated Genome Editing in Lepidoptera -- 8.3 Experimental Design -- 8.4 Embryo Injection -- 8.5 Interpreting Somatic Mosaics -- 8.6 Genotyping -- 8.7 Future Prospects -- Appendix: A Detailed Example of CRISPR/Cas9 Genome Editing in the Painted Lady Butterfly V. cardui -- Target Design -- sgRNA Production -- sgRNA Template Generation -- In Vitro Transcription (IVT).
References -- Chapter 4: Morphological Evolution Repeatedly Caused by Mutations in Signaling Ligand Genes -- 4.1 Gephebase: The Database of Genotype-Phenotype Variations -- 4.2 Method: Construction of Gephebase and Identification of Signaling Genes -- Box 4.1: Definitions -- 4.3 A Few Select Genes for Body-Wide Switches in Melanin Production in Tetrapods -- 4.4 cis-Regulatory Evolution Drives Regional Specific Color Shifts -- 4.5 Recent Stickleback Fish Adaptations Repeatedly Recruited Ligand Alleles -- 4.6 The Wnt Beneath My Wings -- 4.7 Ligand Gene Modularity Allows Interspecific Differences -- 4.8 How, When, and Why Ligand Genes Are Likely Drivers of Pattern Variation, or Not -- 4.9 Synthesis: Variations of Morphological Relevance in Ligand-Coding Genes Are cis-Regulatory, Complex, and Multiallelic -- 4.10 Conclusion -- References -- Part II: Eyespots and Evolution -- Chapter 5: Physiology and Evolution of Wing Pattern Plasticity in Bicyclus Butterflies: A Critical Review of the Literature -- 5.1 Introduction -- 5.2 Physiological Mechanisms of Eyespot Plasticity -- 5.3 Evolution of Plasticity -- 5.4 Plasticity Across Populations and Species -- 5.5 Conclusions -- References -- Chapter 6: Spatial Variation in Boundary Conditions Can Govern Selection and Location of Eyespots in Butterfly Wings -- 6.1 Introduction -- 6.2 Modelling -- 6.2.1 Setting -- 6.2.2 Mathematical Model -- 6.3 Computational Approximation -- 6.4 Results -- 6.4.1 Gradients in Source Strength on the Wing Veins Can Determine Eyespot Location in the Wing Cell -- 6.4.2 A Surface Reaction-Diffusion System Model with Piecewise Constant Reaction Rate Generates Boundary Profiles and Resultin... -- 6.5 Discussion -- References -- Chapter 7: Self-Similarity, Distortion Waves, and the Essence of Morphogenesis: A Generalized View of Color Pattern Formation ... -- 7.1 Introduction.
12.2.1 Observation of Temporal Change in the Population of the Mimetic Female of P. polytes in Miyako-jima Island -- 12.2.2 Variation in the Relative Abundance (RA) in Sakishima Islands -- 12.3 Extended Mathematical Model for Population Dynamics of P. polytes -- 12.3.1 Fundamental Facts on the Mimicry of P. polytes -- 12.3.1.1 Difference in Predation Risk Between Two Forms f. polytes and f. cyrus -- 12.3.1.2 Males Prefer the Non-mimic f. cyrus to the Mimic f. polytes? -- 12.3.1.3 Physiological Life Span of Two Forms f. cyrus and f. polytes -- 12.3.2 Mathematical Model of Three ODEs for Population Dynamics of P. polytes with Intraspecific Competition -- 12.4 Mathematical Analysis of the System Equations and Computer Simulations -- 12.4.1 Mathematical Analysis -- 12.4.1.1 Case 1: r2< -- r3 and beta2=beta3(=beta) -- 12.4.1.2 Case 2: r2=r3 and beta2> -- beta3 -- 12.4.1.3 Case 3: r2=r3 and beta2=beta3(=beta) -- 12.5 Summary and Discussions -- References -- Chapter 13: Evolutionary Trends in Phenotypic Elements of Seasonal Forms of the Tribe Junoniini (Lepidoptera: Nymphalidae) -- 13.1 Introduction -- 13.2 Methods -- 13.3 Results -- 13.3.1 Variation by Pattern Element -- 13.3.2 Variation by Wing Cell -- 13.3.3 Seasonal Eyespot Variation by Clade -- 13.3.4 Seasonal Forewing Apex Shape Change by Clade -- 13.3.5 Shape Type and Shape Change -- 13.3.6 Discussion -- References -- Chapter 14: Estimating the Mating Success of Male Butterflies in the Field -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Source of Animals Used -- 14.2.2 Examination of Reproductive Tracts of Virgin and Mated Males -- 14.2.3 Estimation of Recent Mating Success of Field-Caught Male -- 14.2.4 Spectral Analyses of Iridescent Wing Areas -- 14.3 Results -- 14.3.1 Virgin Male Reproductive Tract -- 14.3.2 Reproductive Tract of Males Immediately After Mating.
14.3.3 Changes in the MaleAs Reproductive Tract with Time Since Mating.
Cas9 Production -- Egg Injection and Survivor Ratio Calculation -- Genotyping for Modification -- References -- Chapter 9: What Can We Learn About Adaptation from the Wing Pattern Genetics of Heliconius Butterflies? -- 9.1 Phenotypic Effects of Major Loci: The Red Locus Optix -- 9.2 Phenotypic Effects of Major Loci: The Yellow Locus Cortex -- 9.3 Phenotypic Effects of Major Loci: The Shape Locus WntA -- 9.4 Phenotypic Effects of Other Loci -- 9.5 Quantitative Analysis -- 9.6 Non-genetic Effects and Plasticity -- 9.7 A Distribution of Effect Sizes? -- 9.8 Supergenes and Polymorphism -- 9.9 Conclusions -- References -- Chapter 10: Molecular Mechanism and Evolutionary Process Underlying Female-Limited Batesian Mimicry in Papilio polytes -- 10.1 Research Background -- 10.2 Papilio Genome Projects Reveal the H Locus and Chromosomal Inversion Near dsx -- 10.3 Linkage Mapping of the H Locus -- 10.4 Detailed Structure of a Long Heterozygous Region Linked to the H Locus -- 10.5 Dimorphic Dsx Structure Associated with the H and h Alleles -- 10.6 Expression Profiles of Genes Around the Inverted Region of H Locus -- 10.7 Functional Analysis of dsx -- 10.8 Evolution of Female-Limited Batesian Mimicry -- References -- Part IV: Ecological Aspects and Adaptation -- Chapter 11: Chemical Ecology of Poisonous Butterflies: Model or Mimic? A Paradox of Sexual Dimorphisms in Mullerian Mimicry -- 11.1 Introduction -- 11.1.1 Tiger Danaus Mimicry Ring -- 11.1.2 Idea Butterfly Mimicry Ring -- 11.1.3 Red-Bodied Swallowtail Mimicry Ring -- 11.2 Discussion -- References -- Chapter 12: A Model for Population Dynamics of the Mimetic Butterfly Papilio polytes in Sakishima Islands, Japan (II) -- 12.1 Introduction -- 12.2 Field Records of Papilio polytes Observed in Sakishima Islands.
001895289
express
(Au-PeEL)EBL6422890
(MiAaPQ)EBC6422890
(OCoLC)1004988012

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC