Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 29.06.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2021
1 online resource (375 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030553968 (electronic bk.)
ISBN 9783030553951
Print version: Zaman, Mohammad Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options Using Nuclear and Related Techniques Cham : Springer International Publishing AG,c2021 ISBN 9783030553951
2.7.2 Theory: Near-Infrared Absorption Spectroscopy Fundamentals -- 2.7.3 Operational Principle of Cavity Ring-Down Spectroscopy.
2.2.8 GHG Measurements in Paddy Rice System -- 2.2.9 Analysis of GHG Samples on a Gas Chromatograph (GC) -- 2.3 Methods to Quantify GHG Production in the Soil Profile -- 2.4 Standard Operating Procedure (SOP) for Gas Flux Measurement -- 2.4.1 Field Gears and Equipment Needed for GHG Sampling -- 2.4.2 Step-Wise Procedure (SOP) for GHG Measurements -- 2.4.3 Gas and Soil Sampling -- 2.4.4 Safety Measures for GHG Sampling -- 2.5 Calculation of GHG Fluxes -- 2.5.1 Overview -- 2.5.2 Calibration -- 2.5.3 Calculation of the Gas Concentration and Fluxes -- 2.5.4 Conversion from Concentration to Mole -- 2.5.5 Data Analysis -- 2.6 Analysis of GHG Samples with Optical Gas Analysers -- 2.7 Hands-On Approaches Using a CRDS Analyser -- 2.7.1 Overview of the CRDS Techniques for Determining GHG Concentrations and Soil Fluxes ---
2.7.2 Theory: Near-Infrared Absorption Spectroscopy Fundamentals -- 2.7.3 Operational Principle of Cavity Ring-Down Spectroscopy.
Intro -- Foreword -- Preface -- Acknowledgements -- How to Cite the Book -- Contents -- Editors and Contributors -- Acronyms and Abbreviations -- List of Figures -- List of Plates -- List of Tables -- 1 Greenhouse Gases from Agriculture -- 1.1 Introduction -- 1.2 Impact of Ammonia on GHG Emissions -- 1.3 Aim of the Book -- References -- 2 Methodology for Measuring Greenhouse Gas Emissions from Agricultural Soils Using Non-isotopic Techniques -- 2.1 Introduction -- 2.2 Chamber-Based Methods -- 2.2.1 Advantages and Disadvantages of Closed Chamber-Based Methods -- 2.2.2 Principles and Applications of Chamber-Based Techniques for Gas Flux Measurement -- 2.2.3 Gas Exchange Processes -- 2.2.4 Chamber Types -- 2.2.5 Chamber Design -- 2.2.6 Chamber Operation, Accessories, Evacuation of Exetainers, and Gas Flux Measurement -- 2.2.7 Gas Pooling to Address the Spatial Variability of Soil GHG Fluxes ---
6.4.1 Open-Path Lasers -- 6.5 Short-Term Measurements -- 6.5.1 Spot Sampling Using Lasers -- 6.6 Indirect Methods -- 6.6.1 Methane Emissions from Feed and Feed Characteristics -- 6.6.2 Emissions from Volatile Fatty Acids (VFAs) -- 6.6.3 In Vitro Incubations -- 6.6.4 Batch Systems -- 6.7 Methane from Animal Wastes -- 6.8 Storage and Analysis of Samples -- 6.8.1 Storage of Samples -- 6.8.2 Analysis of Samples -- References -- 7 Isotopic Techniques to Measure N2O, N2 and Their Sources -- 7.1 Introduction -- 7.2 15N Gas Flux Method (15N GFM) to Identify N2O and N2 Fluxes from Denitrification -- 7.2.1 Background -- 7.2.2 Principles of the 15N Gas Flux Method -- 7.2.3 Identifying the Formation of Hybrid N2 and/or N2O -- 7.2.4 Analysis of N2 and N2O Isotopologues -- 7.2.5 Detection Limit for ap and fp -- 7.2.6 Limitations of the 15N Gas Flux Method (15N GFM) ---
2.7.4 Minimum Detectable Flux (MDF) -- 2.7.5 Selecting the Appropriate Flow Path -- 2.7.6 In-Line Flow Path -- 2.7.7 Parallel Flow Path -- 2.7.8 Multiple Chambers -- 2.7.9 Calibration -- 2.7.10 Advanced Application Considerations: Filtration of Gas Samples -- 2.7.11 Liquid Water and Water Vapour -- 2.7.12 CRDS-Specific Considerations -- 2.7.13 Datalogging and Flux Processing -- 2.8 Enhanced Raman Spectroscopy of Greenhouse Gases -- 2.8.1 Raman Spectroscopy of Gases -- 2.8.2 Enhanced Raman Gas Spectroscopy -- 2.8.3 Enhanced Raman Spectroscopic Analysis of Greenhouse Gases -- 2.9 GHG Fluxes from Aquatic Systems -- 2.9.1 Determining Dissolved N2O Concentrations -- 2.9.2 Determining N2O Fluxes from a Water Body -- 2.9.3 Determining Gas Transfer Velocity (K) -- 2.9.4 Models for Determining N2O Fluxes from Water Bodies -- 2.9.5 Other Factors to Consider -- 2.9.6 Determining EF5 -- 2.10 Indirect GHG Emissions-Ammonia Emissions -- 2.10.1 A Simple Low-Cost Chamber to Quantify NH3 Volatilisation -- 2.11 Gas Production Processes in Terrestrial Ecosystems -- References -- 3 Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions -- 3.1 Automated Laboratory Techniques -- 3.1.1 Technical Challenges -- 3.1.2 System 1 -- 3.1.3 System 2 -- 3.2 Automated Chamber Systems for Field Measurements -- 3.2.1 Field Techniques Using GC Systems -- 3.2.2 Combination of Automatic Chamber System and CRDS Analyser for Field GHG Flux Measurements -- References -- 4 Micrometeorological Methods for Greenhouse Gas Measurement -- 4.1 Introduction -- 4.2 Flux-Gradient Method -- 4.3 Aerodynamic Method -- 4.4 Bowen Ratio (Energy Balance Method) -- 4.5 Eddy Correlation Approach -- 4.6 Alternative Micrometeorological Methods -- 4.6.1 Eddy Accumulation -- 4.6.2 Mass Balance Technique -- 4.7 Non-isotopic Tracer Release and Measurement Methods -- References.
7.3 Isotopocule Techniques to Identify Pathway-Specific N2O Emissions -- 7.3.1 Introduction -- 7.3.2 Principles -- 7.3.3 Analysis of N2O Isotopocules by IRMS -- 7.3.4 Laser Spectroscopic Analysis of N2O Isotopomers to Differentiate Pathways -- 7.3.5 Hands-on Approach to Use a CRDS Isotopic N2O Analyser -- 7.3.6 Accuracy, Precision and Bias -- 7.3.7 Examples of Laboratory Applications -- 7.3.8 Examples of Field Applications -- 7.3.9 Outlook -- 7.4 Dual Isotope Method for Distinguishing Among Sources of N2O -- 7.5 Quantification of Gross N Transformation Rates and Process Specific N2O Pathways via 15N Tracing -- 7.5.1 Background -- 7.5.2 Stable Isotope Tracing Technique -- 7.5.3 Setup of Tracing Experiments -- 7.5.4 Analyses of Experimental Data -- 7.5.5 15N Tracing Model Analyses via Ntrace -- 7.5.6 Parameter Optimisation with Ntrace -- 7.5.7 Determination of N2O Pathways -- 7.5.8 Source Partitioning to Quantify N2O Pathways -- References -- 8 Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions -- 8.1 Introduction on Climate-Smart Agriculture Practices and Greenhouse Gas Emissions -- 8.2 Climate-Smart Agricultural Technology to Reduce GHG Emissions -- 8.2.1 Nitrogen Process Inhibitors and Greenhouse Gas Emissions -- 8.2.2 Soil Amendments and Greenhouse Gas Emissions -- 8.2.3 Fertiliser Type and Management and Greenhouse Gas Emissions -- 8.2.4 Cropping Systems and Greenhouse Gas Emissions -- 8.3 Climate-Smart Agriculture (CSA) Practices and C Sequestration -- 8.4 Life Cycle Assessment (LCA) for Estimating the C Footprint of Agro-Food Systems -- 8.5 Conclusions -- References -- Index.
6.4.1 Open-Path Lasers -- 6.5 Short-Term Measurements -- 6.5.1 Spot Sampling Using Lasers -- 6.6 Indirect Methods -- 6.6.1 Methane Emissions from Feed and Feed Characteristics -- 6.6.2 Emissions from Volatile Fatty Acids (VFAs) -- 6.6.3 In Vitro Incubations -- 6.6.4 Batch Systems -- 6.7 Methane from Animal Wastes -- 6.8 Storage and Analysis of Samples -- 6.8.1 Storage of Samples -- 6.8.2 Analysis of Samples -- References -- 7 Isotopic Techniques to Measure N2O, N2 and Their Sources -- 7.1 Introduction -- 7.2 15N Gas Flux Method (15N GFM) to Identify N2O and N2 Fluxes from Denitrification -- 7.2.1 Background -- 7.2.2 Principles of the 15N Gas Flux Method -- 7.2.3 Identifying the Formation of Hybrid N2 and/or N2O -- 7.2.4 Analysis of N2 and N2O Isotopologues -- 7.2.5 Detection Limit for ap and fp -- 7.2.6 Limitations of the 15N Gas Flux Method (15N GFM) ---
7.2.7 Evaluation of the 15N GFM -- 7.2.8 Lab and Field Experiments -- 7.2.9 Conclusions and Outlook.
2.7.4 Minimum Detectable Flux (MDF) -- 2.7.5 Selecting the Appropriate Flow Path -- 2.7.6 In-Line Flow Path -- 2.7.7 Parallel Flow Path -- 2.7.8 Multiple Chambers -- 2.7.9 Calibration -- 2.7.10 Advanced Application Considerations: Filtration of Gas Samples -- 2.7.11 Liquid Water and Water Vapour -- 2.7.12 CRDS-Specific Considerations -- 2.7.13 Datalogging and Flux Processing -- 2.8 Enhanced Raman Spectroscopy of Greenhouse Gases -- 2.8.1 Raman Spectroscopy of Gases -- 2.8.2 Enhanced Raman Gas Spectroscopy -- 2.8.3 Enhanced Raman Spectroscopic Analysis of Greenhouse Gases -- 2.9 GHG Fluxes from Aquatic Systems -- 2.9.1 Determining Dissolved N2O Concentrations -- 2.9.2 Determining N2O Fluxes from a Water Body -- 2.9.3 Determining Gas Transfer Velocity (K) -- 2.9.4 Models for Determining N2O Fluxes from Water Bodies -- 2.9.5 Other Factors to Consider -- 2.9.6 Determining EF5 -- 2.10 Indirect GHG Emissions-Ammonia Emissions -- 2.10.1 A Simple Low-Cost Chamber to Quantify NH3 Volatilisation -- 2.11 Gas Production Processes in Terrestrial Ecosystems -- References -- 3 Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions -- 3.1 Automated Laboratory Techniques -- 3.1.1 Technical Challenges -- 3.1.2 System 1 -- 3.1.3 System 2 -- 3.2 Automated Chamber Systems for Field Measurements -- 3.2.1 Field Techniques Using GC Systems -- 3.2.2 Combination of Automatic Chamber System and CRDS Analyser for Field GHG Flux Measurements -- References -- 4 Micrometeorological Methods for Greenhouse Gas Measurement -- 4.1 Introduction -- 4.2 Flux-Gradient Method -- 4.3 Aerodynamic Method -- 4.4 Bowen Ratio (Energy Balance Method) -- 4.5 Eddy Correlation Approach -- 4.6 Alternative Micrometeorological Methods -- 4.6.1 Eddy Accumulation -- 4.6.2 Mass Balance Technique -- 4.7 Non-isotopic Tracer Release and Measurement Methods -- References.
5 Direct and Indirect Effects of Soil Fauna, Fungi and Plants on Greenhouse Gas Fluxes -- 5.1 Greenhouse Gases from Soil Fauna -- 5.1.1 Introduction -- 5.1.2 Overview of Fauna on GHG Emissions -- 5.1.3 Field Methodology -- 5.2 Greenhouse Gases from Fungi and Plants -- 5.2.1 Methane (CH4) -- 5.2.2 A Laboratory Approach to Study CH4 Production from Plants and Fungi -- 5.2.3 Measuring Procedure -- 5.3 Measuring Discrete Gas Samples with a Cavity Ring-Down Spectrometer for CO2 and CH4 Concentration and Carbon Isotope Analysis -- References -- 6 Methane Production in Ruminant Animals -- 6.1 Introduction -- 6.2 Direct Measurements -- 6.2.1 Enclosure Techniques -- 6.3 Tracer Techniques -- 6.3.1 Use of SF6 Bolus -- 6.3.2 Tracer Ratio Method for Emission Measurements in Naturally Ventilated Housing -- 6.3.3 Application of CH4: CO2 Ratio -- 6.4 Micrometeorological Estimates ---
7.3 Isotopocule Techniques to Identify Pathway-Specific N2O Emissions -- 7.3.1 Introduction -- 7.3.2 Principles -- 7.3.3 Analysis of N2O Isotopocules by IRMS -- 7.3.4 Laser Spectroscopic Analysis of N2O Isotopomers to Differentiate Pathways -- 7.3.5 Hands-on Approach to Use a CRDS Isotopic N2O Analyser -- 7.3.6 Accuracy, Precision and Bias -- 7.3.7 Examples of Laboratory Applications -- 7.3.8 Examples of Field Applications -- 7.3.9 Outlook -- 7.4 Dual Isotope Method for Distinguishing Among Sources of N2O -- 7.5 Quantification of Gross N Transformation Rates and Process Specific N2O Pathways via 15N Tracing -- 7.5.1 Background -- 7.5.2 Stable Isotope Tracing Technique -- 7.5.3 Setup of Tracing Experiments -- 7.5.4 Analyses of Experimental Data -- 7.5.5 15N Tracing Model Analyses via Ntrace -- 7.5.6 Parameter Optimisation with Ntrace -- 7.5.7 Determination of N2O Pathways -- 7.5.8 Source Partitioning to Quantify N2O Pathways -- References -- 8 Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions -- 8.1 Introduction on Climate-Smart Agriculture Practices and Greenhouse Gas Emissions -- 8.2 Climate-Smart Agricultural Technology to Reduce GHG Emissions -- 8.2.1 Nitrogen Process Inhibitors and Greenhouse Gas Emissions -- 8.2.2 Soil Amendments and Greenhouse Gas Emissions -- 8.2.3 Fertiliser Type and Management and Greenhouse Gas Emissions -- 8.2.4 Cropping Systems and Greenhouse Gas Emissions -- 8.3 Climate-Smart Agriculture (CSA) Practices and C Sequestration -- 8.4 Life Cycle Assessment (LCA) for Estimating the C Footprint of Agro-Food Systems -- 8.5 Conclusions -- References -- Index.
001895384
express
(Au-PeEL)EBL6465857
(MiAaPQ)EBC6465857
(OCoLC)1236264926

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC