Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2021
1 online resource (321 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030609146 (electronic bk.)
ISBN 9783030609139
Print version: Most, Dominik The Future European Energy System Cham : Springer International Publishing AG,c2021 ISBN 9783030609139
4.4 State-of-the-Art Experience Curves and Modeling Results.
3.2.4 FORECAST -- 3.2.5 eLOAD -- 3.2.6 ASTRA -- 3.2.7 TE3 -- 3.2.8 eLCA and sLCA -- 3.2.9 sESA -- 3.3 REFLEX Energy Models System -- References -- Part IITechnological Progress -- 4 Deriving Experience Curves and Implementing Technological Learning in Energy System Models -- 4.1 Introduction -- 4.1.1 History and Concept -- 4.1.2 Key Applications of Experience Curves -- 4.1.3 Key Issues and Drawbacks of Experience Curves -- 4.2 Data Collection and Derivation of Experience Curves -- 4.2.1 Functional Unit and System Boundaries -- 4.2.2 Correction for Currency and Inflation -- 4.2.3 Deriving Experience Curve Parameters -- 4.3 Experience Curves in Energy System Models -- 4.3.1 Model Implementation of Experience Curves -- 4.3.2 Issues with Implementation of Experience Curves in Energy Models -- 4.3.3 Description of Energy Models with Implemented Experience Curves ---
4.4 State-of-the-Art Experience Curves and Modeling Results.
Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- List of Figures -- List of Tables -- Part IIntroduction, Scenario Description and Model Coupling Approach -- 1 Introduction -- Reference -- 2 Scenario Storyline in Context of Decarbonization Pathways for a Future European Energy System -- 2.1 Introduction -- 2.2 Scenario Definition and General Drivers -- 2.3 Socio-Technical Scenario Framework -- 2.4 Moderate Renewable Energy Source Scenario (Mod-RES) -- 2.5 Centralized versus Decentralized High Renewable Scenario (High-RES) -- 2.5.1 Centralized High-RES Scenario -- 2.5.2 Decentralized High-RES Scenario -- 2.6 Conclusions -- References -- 3 Model Coupling Approach for the Analysis of the Future European Energy System -- 3.1 Introduction -- 3.2 Description of Applied Models -- 3.2.1 ELTRAMOD -- 3.2.2 TIMES-Heat-EU -- 3.2.3 PowerACE ---
11.1 The European Debate on Electricity Market Design -- 11.2 Research Design -- 11.3 Development of the Conventional Generation Capacities and Wholesale Electricity Prices -- 11.3.1 Mod-RES Scenario -- 11.3.2 High-RES Decentralized Scenario -- 11.3.3 High-RES Centralized Scenario -- 11.4 Impact on Generation Adequacy -- 11.5 Summary and Conclusions -- References -- 12 Optimal Energy Portfolios in the Heating Sector and Flexibility Potentials of Combined-Heat-Power Plants and District Heating Systems -- 12.1 Introduction -- 12.2 TIMES-Heat-EU Model -- 12.3 Developments in the District Heating Sector -- 12.3.1 Scenario Results -- 12.3.2 CO2 Emissions in the Heating Sector -- 12.3.3 Sensitivity Analysis -- 12.4 Conclusion -- References -- Part VAnalysis of the Environmental and Socio-Impacts beyond the Greenhouse Gas Emission Reduction Targets ---
14.2.2 Establishing the Life Cycle Model for Social Assessment -- 14.2.3 Social Impact Categories -- 14.2.4 Calculation Method -- 14.2.5 Contribution Analysis -- 14.3 Results -- 14.4 Concluding Discussion and Policy Implications -- References -- 15 Spatially Disaggregated Impact Pathway Analysis of Direct Particulate Matter Emissions -- 15.1 Introduction -- 15.2 Description of the Method -- 15.2.1 Emission Scenarios -- 15.2.2 Air Quality Modeling -- 15.2.3 Health Impacts and External Costs -- 15.3 Results -- 15.3.1 Summary and Conclusions -- References -- Part VIConcluding Remarks -- 16 Summary, Conclusion and Recommendations -- 16.1 Summary -- 16.1.1 Electricity Sector -- 16.1.2 Demand Side Sectors -- 16.1.3 Environmental Impacts -- 16.2 Conclusions and Recommendations -- 16.2.1 Electricity Sector -- 16.2.2 Industry Sector -- 16.2.3 Transport Sector -- 16.2.4 Heating Sector ---
5.3.3 Critical Review and Limitations -- 5.4 Summary and Conclusions -- References -- Part IIIDemand Side Flexibility and the Role of Disruptive Technologies -- 6 Future Energy Demand Developments and Demand Side Flexibility in a Decarbonized Centralized Energy System -- 6.1 Introduction -- 6.2 Scenario Assumptions and Model Coupling -- 6.3 Future Energy Demand and CO2 Emissions -- 6.3.1 Decarbonizing the Transport Sector -- 6.3.2 Decarbonizing the Residential and Tertiary Sector -- 6.3.3 Decarbonizing the Industry Sector -- 6.4 The Future Need for Demand Side Flexibility -- 6.5 Conclusions -- References -- 7 Disruptive Demand Side Technologies: Market Shares and Impact on Flexibility in a Decentralized World -- 7.1 Introduction -- 7.1.1 Strategies for Decarbonizing Transport -- 7.1.2 Technologies for Decarbonizing Industry ---
8.1.2 Overview of Tertiary Sector and Potential Applications, Regulatory Environment -- 8.2 Data Collection Methodology -- 8.2.1 Research Questions -- 8.2.2 Empirical Survey Introduction -- 8.2.3 Issues Encountered Regarding Empirical Data -- 8.3 Survey Results and Derived Flexibility Potentials -- 8.3.1 Participation Interest in DSM -- 8.3.2 Available Technologies -- 8.3.3 Derived Flexibility Potentials (S-Curve) -- 8.3.4 Lessons Learned and Issues Identified for Modelers -- 8.4 Conclusions and Recommendations for Further Research -- References -- 9 A Techno-Economic Comparison of Demand Side Management with Other Flexibility Options -- 9.1 Introduction -- 9.2 Techno-Economic Characteristics of DSM in Comparison with Other Flexibility Options -- 9.2.1 Technical Characteristics of DSM -- 9.2.2 Activation and Initialization Costs of DSM -- 9.3 Impact of DSM on Other Flexibility Options ---
13.2 Developing the Model Coupling Approach to Identify Environmental Trade-Offs -- 13.2.1 Describing Relevant Input Parameters for the LCA Model in Context of the REFLEX Scenarios -- 13.2.2 Coupling the Results of ELTRAMOD and the LCA Model to Determine Policy Implications -- 13.3 Unintended Environmental Consequences of the European Low-Carbon Electricity System -- 13.3.1 Environmental Impacts at Local Scale and the Challenges for European Member States -- 13.3.2 Resource Depletion in REFLEX Mitigation Scenarios as a Backdrop of Global Trade Uncertainty -- 13.4 Conclusions and Policy Implications -- References -- 14 Assessing Social Impacts in Current and Future Electricity Production in the European Union -- 14.1 Introduction -- 14.2 Method -- 14.2.1 Background to the SOCA Add-on for Social Life Cycle Assessment ---
7.2.1 Photovoltaic Systems and Stationary Batteries -- 7.2.2 Battery Electric Vehicles -- 7.2.3 Hydrogen Electrolysis -- 7.3 Scenario Assumptions and Methodology -- 7.3.1 Scenario Assumptions for High-RES Decentralized -- 7.3.2 Model Coupling Approach -- 7.3.3 Methods Used for Technology Diffusion -- 7.4 Results: Diffusion of Technologies and Energy Demand -- 7.4.1 Installed Battery Capacity -- 7.4.2 Vehicle Fleet Technology Composition and Resulting Energy Demand -- 7.4.3 Radical Process Improvements in Industry and Their Implications for Future Electricity Demand -- 7.5 Impacts of Disruptive Technologies on Demand Side Flexibility -- 7.6 Discussion and Conclusions -- References -- 8 What is the Flexibility Potential in the Tertiary Sector? -- 8.1 Introduction -- 8.1.1 Overview of Demand Side Flexibility Markets ---
11.1 The European Debate on Electricity Market Design -- 11.2 Research Design -- 11.3 Development of the Conventional Generation Capacities and Wholesale Electricity Prices -- 11.3.1 Mod-RES Scenario -- 11.3.2 High-RES Decentralized Scenario -- 11.3.3 High-RES Centralized Scenario -- 11.4 Impact on Generation Adequacy -- 11.5 Summary and Conclusions -- References -- 12 Optimal Energy Portfolios in the Heating Sector and Flexibility Potentials of Combined-Heat-Power Plants and District Heating Systems -- 12.1 Introduction -- 12.2 TIMES-Heat-EU Model -- 12.3 Developments in the District Heating Sector -- 12.3.1 Scenario Results -- 12.3.2 CO2 Emissions in the Heating Sector -- 12.3.3 Sensitivity Analysis -- 12.4 Conclusion -- References -- Part VAnalysis of the Environmental and Socio-Impacts beyond the Greenhouse Gas Emission Reduction Targets ---
13 Unintended Environmental Impacts at Local and Global Scale-Trade-Offs of a Low-Carbon Electricity System -- 13.1 Introduction.
14.2.2 Establishing the Life Cycle Model for Social Assessment -- 14.2.3 Social Impact Categories -- 14.2.4 Calculation Method -- 14.2.5 Contribution Analysis -- 14.3 Results -- 14.4 Concluding Discussion and Policy Implications -- References -- 15 Spatially Disaggregated Impact Pathway Analysis of Direct Particulate Matter Emissions -- 15.1 Introduction -- 15.2 Description of the Method -- 15.2.1 Emission Scenarios -- 15.2.2 Air Quality Modeling -- 15.2.3 Health Impacts and External Costs -- 15.3 Results -- 15.3.1 Summary and Conclusions -- References -- Part VIConcluding Remarks -- 16 Summary, Conclusion and Recommendations -- 16.1 Summary -- 16.1.1 Electricity Sector -- 16.1.2 Demand Side Sectors -- 16.1.3 Environmental Impacts -- 16.2 Conclusions and Recommendations -- 16.2.1 Electricity Sector -- 16.2.2 Industry Sector -- 16.2.3 Transport Sector -- 16.2.4 Heating Sector ---
16.2.5 Environmental, Social Life Cycle and Health Impact Assessment -- 16.3 Further Aspects and Outlook -- References.
5.3.3 Critical Review and Limitations -- 5.4 Summary and Conclusions -- References -- Part IIIDemand Side Flexibility and the Role of Disruptive Technologies -- 6 Future Energy Demand Developments and Demand Side Flexibility in a Decarbonized Centralized Energy System -- 6.1 Introduction -- 6.2 Scenario Assumptions and Model Coupling -- 6.3 Future Energy Demand and CO2 Emissions -- 6.3.1 Decarbonizing the Transport Sector -- 6.3.2 Decarbonizing the Residential and Tertiary Sector -- 6.3.3 Decarbonizing the Industry Sector -- 6.4 The Future Need for Demand Side Flexibility -- 6.5 Conclusions -- References -- 7 Disruptive Demand Side Technologies: Market Shares and Impact on Flexibility in a Decentralized World -- 7.1 Introduction -- 7.1.1 Strategies for Decarbonizing Transport -- 7.1.2 Technologies for Decarbonizing Industry ---
7.1.3 Focus of this Study: Disruptive Technologies with Demand Side Flexibility -- 7.2 Disruptive Technologies with Flexibility Potential.
8.1.2 Overview of Tertiary Sector and Potential Applications, Regulatory Environment -- 8.2 Data Collection Methodology -- 8.2.1 Research Questions -- 8.2.2 Empirical Survey Introduction -- 8.2.3 Issues Encountered Regarding Empirical Data -- 8.3 Survey Results and Derived Flexibility Potentials -- 8.3.1 Participation Interest in DSM -- 8.3.2 Available Technologies -- 8.3.3 Derived Flexibility Potentials (S-Curve) -- 8.3.4 Lessons Learned and Issues Identified for Modelers -- 8.4 Conclusions and Recommendations for Further Research -- References -- 9 A Techno-Economic Comparison of Demand Side Management with Other Flexibility Options -- 9.1 Introduction -- 9.2 Techno-Economic Characteristics of DSM in Comparison with Other Flexibility Options -- 9.2.1 Technical Characteristics of DSM -- 9.2.2 Activation and Initialization Costs of DSM -- 9.3 Impact of DSM on Other Flexibility Options ---
9.3.1 Framework of the Analysis -- 9.3.2 Impact of DSM on the Operation of Conventional Power Plants and Pump Storage Plants.
13.2 Developing the Model Coupling Approach to Identify Environmental Trade-Offs -- 13.2.1 Describing Relevant Input Parameters for the LCA Model in Context of the REFLEX Scenarios -- 13.2.2 Coupling the Results of ELTRAMOD and the LCA Model to Determine Policy Implications -- 13.3 Unintended Environmental Consequences of the European Low-Carbon Electricity System -- 13.3.1 Environmental Impacts at Local Scale and the Challenges for European Member States -- 13.3.2 Resource Depletion in REFLEX Mitigation Scenarios as a Backdrop of Global Trade Uncertainty -- 13.4 Conclusions and Policy Implications -- References -- 14 Assessing Social Impacts in Current and Future Electricity Production in the European Union -- 14.1 Introduction -- 14.2 Method -- 14.2.1 Background to the SOCA Add-on for Social Life Cycle Assessment ---
4.4.1 Overview of State-of-the-Art Experience Curves -- 4.4.2 Deployments and Cost Developments of Relevant Technologies -- 4.5 Lessons Learned -- 4.5.1 Methodological Issues -- 4.5.2 Model Implementation Issues -- 4.6 Conclusions -- References -- 5 Electric Vehicle Market Diffusion in Main Non-European Markets -- 5.1 Introduction -- 5.1.1 Motivation -- 5.1.2 Related Research and Research Question -- 5.2 Considering Experience Curves in Market Diffusion Modeling and Scenario Definition -- 5.2.1 The TE3 Model and Implementation of Experience Curves -- 5.2.2 Framework of the Two Analyzed Scenarios for the Main Non-European Car Markets -- 5.3 Results of Key Non-European Countries -- 5.3.1 Effects on Cumulative Battery Capacity and Battery Costs -- 5.3.2 Development of the Car Stock for the Four Main Markets in the Mod-RES and High-RES Scenario ---
7.2.1 Photovoltaic Systems and Stationary Batteries -- 7.2.2 Battery Electric Vehicles -- 7.2.3 Hydrogen Electrolysis -- 7.3 Scenario Assumptions and Methodology -- 7.3.1 Scenario Assumptions for High-RES Decentralized -- 7.3.2 Model Coupling Approach -- 7.3.3 Methods Used for Technology Diffusion -- 7.4 Results: Diffusion of Technologies and Energy Demand -- 7.4.1 Installed Battery Capacity -- 7.4.2 Vehicle Fleet Technology Composition and Resulting Energy Demand -- 7.4.3 Radical Process Improvements in Industry and Their Implications for Future Electricity Demand -- 7.5 Impacts of Disruptive Technologies on Demand Side Flexibility -- 7.6 Discussion and Conclusions -- References -- 8 What is the Flexibility Potential in the Tertiary Sector? -- 8.1 Introduction -- 8.1.1 Overview of Demand Side Flexibility Markets ---
9.3.3 Impact of DSM on Imports and Exports -- 9.4 Conclusions -- References -- Part IVFlexibility Options in the Electricity and Heating Sector -- 10 Optimal Energy Portfolios in the Electricity Sector: Trade-Offs and Interplay Between Different Flexibility Options -- 10.1 Introduction -- 10.2 Data Input and Model Coupling -- 10.3 Optimal Investments in Flexibility Options -- 10.3.1 Sector Coupling Technologies -- 10.3.2 Power Plant Mix -- 10.3.3 Storages -- 10.4 Sensitivity Analyses -- 10.4.1 Impact of Limited DSM Potential and Reduced Battery Investment Costs on the Storage Value in the Electricity Market -- 10.4.2 Impact of Higher Shares of Renewable Energy Sources -- 10.5 Levelized Costs of Electricity and CO2 Abatement Costs -- 10.6 Discussion and Conclusion -- References -- 11 Impact of Electricity Market Designs on Investments in Flexibility Options ---
001895411
express
(Au-PeEL)EBL6491804
(MiAaPQ)EBC6491804
(OCoLC)1240209242

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC