Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2021
1 online resource (364 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783319928104 (electronic bk.)
ISBN 9783319928098
Print version: Leite Cavalcanti, Welchy Adhesive Bonding of Aircraft Composite Structures Cham : Springer International Publishing AG,c2021 ISBN 9783319928098
3 Extended Non-destructive Testing for Surface Quality Assessment -- 3.1 Introduction -- 3.2 Aerosol Wetting Test (AWT).
2 Characterization of Pre-bond Contamination and Aging Effects for CFRP Bonded Joints Using Reference Laboratory Methods, Mechanical Tests, and Numerical Simulation -- 2.1 Introduction -- 2.2 Materials and Sample Geometries -- 2.2.1 Basic Materials -- 2.2.2 Sample Geometries -- 2.3 Manufacturing -- 2.3.1 Adherend Manufacturing -- 2.3.2 Adherend Pre-bond Contamination -- 2.3.3 Bonding -- 2.4 Experimental Procedure -- 2.4.1 Characterization of CFRP Adherend Surfaces by Reference Methods -- 2.4.2 Characterization of CFRP Bonded Samples by Reference Methods -- 2.5 Mechanical Testing -- 2.5.1 Fracture Toughness Testing -- 2.6 Experimental Results -- 2.6.1 Spectroscopic Surface Characterization -- 2.6.2 Ultrasound Results -- 2.6.3 Fracture Toughness Results -- 2.6.4 Tensile Testing -- 2.6.5 Centrifuge Test Results -- 2.7 Numerical Simulation -- 2.7.1 FE Model -- 2.7.2 Numerical Results -- 2.8 Conclusions/Synopsis -- References ---
3 Extended Non-destructive Testing for Surface Quality Assessment -- 3.1 Introduction -- 3.2 Aerosol Wetting Test (AWT).
Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- Abbreviations -- 1 Introduction to Recent Advances in Quality Assessment for Adhesive Bonding Technology -- 1.1 Introduction -- 1.2 Technological and Regulatory Framework -- 1.2.1 Adhesive Bonding Processes -- 1.2.2 Quality Assurance and Monitoring -- 1.2.3 Quality Assessment for Adhesive Bonding -- 1.2.4 Ten Heuristic Quality Assessment Principles for Adhesive Bonding Processes -- 1.2.5 Extended Non-destructive Testing for Bonding CFRP -- 1.2.6 Concepts for ENDT and Quality Assessment in Adhesive Bonding -- 1.3 Recent Joint Research for Advancing QA in Adhesive Bonding -- 1.3.1 Objectives and Rationale -- 1.3.2 Concept and Approaches -- 1.3.3 Aims and Key Aspects -- 1.3.4 Impacts and Contributions -- 1.4 Synopsis -- References ---
3.8 Laser-Induced Fluorescence (LIF) -- 3.8.1 Principle and Instrumentation -- 3.8.2 LIF Results -- 3.9 Conclusion -- References -- 4 Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structures -- 4.1 Introduction -- 4.2 Electromechanical Impedance -- 4.2.1 Principle and Instrumentation -- 4.2.2 EMI Results -- 4.3 Laser Shocks -- 4.3.1 Principle and Instrumentation -- 4.3.2 Laser Shock Results -- 4.4 Nonlinear Ultrasonic Technique -- 4.4.1 Principle and Instrumentation -- 4.4.2 Nonlinear Ultrasonic Technique Results -- 4.5 Conclusion -- References -- 5 Extended Non-destructive Testing Technique Demonstration in a Realistic Environment with Technology Assessment -- 5.1 Introduction to the Full-Scale Demonstration Event -- 5.2 Setup of the Full-Scale Demonstration: Materials, Workflow, and Operations -- 5.2.1 Providing Real and Realistic Parts ---
3.2.1 Principle and Instrumentation -- 3.2.2 AWT Results -- 3.2.3 AWT Results for the Pilot Level Samples -- 3.2.4 AWT Performance in Inline Surface Quality Assessment -- 3.3 Optically Stimulated Electron Emission (OSEE) -- 3.3.1 Principle and Instrumentation -- 3.3.2 OSEE Results -- 3.3.3 Performance in Inline Surface Quality Assurance -- 3.4 Electronic Nose -- 3.4.1 Principle and Instrumentation -- 3.4.2 E-nose Methodology -- 3.4.3 Final Remarks -- 3.5 Laser-Induced Breakdown Spectroscopy (LIBS) -- 3.5.1 Principle and Instrumentation -- 3.5.2 LIBS Results -- 3.5.3 Performance in Inline Surface Quality Assurance -- 3.6 Fourier-Transform Infrared Spectroscopy (FTIR) -- 3.6.1 Principle and Instrumentation -- 3.6.2 FTIR Results -- 3.6.3 Performance in Inline Surface Quality Assurance -- 3.7 Vibrometry Inspection -- 3.7.1 Principle and Instrumentation -- 3.7.2 Vibrometry Inspection Results -- 3.7.3 Final Remarks ---
3.8 Laser-Induced Fluorescence (LIF) -- 3.8.1 Principle and Instrumentation -- 3.8.2 LIF Results -- 3.9 Conclusion -- References -- 4 Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structures -- 4.1 Introduction -- 4.2 Electromechanical Impedance -- 4.2.1 Principle and Instrumentation -- 4.2.2 EMI Results -- 4.3 Laser Shocks -- 4.3.1 Principle and Instrumentation -- 4.3.2 Laser Shock Results -- 4.4 Nonlinear Ultrasonic Technique -- 4.4.1 Principle and Instrumentation -- 4.4.2 Nonlinear Ultrasonic Technique Results -- 4.5 Conclusion -- References -- 5 Extended Non-destructive Testing Technique Demonstration in a Realistic Environment with Technology Assessment -- 5.1 Introduction to the Full-Scale Demonstration Event -- 5.2 Setup of the Full-Scale Demonstration: Materials, Workflow, and Operations -- 5.2.1 Providing Real and Realistic Parts ---
5.2.2 Participants and Operations.
3.2.1 Principle and Instrumentation -- 3.2.2 AWT Results -- 3.2.3 AWT Results for the Pilot Level Samples -- 3.2.4 AWT Performance in Inline Surface Quality Assessment -- 3.3 Optically Stimulated Electron Emission (OSEE) -- 3.3.1 Principle and Instrumentation -- 3.3.2 OSEE Results -- 3.3.3 Performance in Inline Surface Quality Assurance -- 3.4 Electronic Nose -- 3.4.1 Principle and Instrumentation -- 3.4.2 E-nose Methodology -- 3.4.3 Final Remarks -- 3.5 Laser-Induced Breakdown Spectroscopy (LIBS) -- 3.5.1 Principle and Instrumentation -- 3.5.2 LIBS Results -- 3.5.3 Performance in Inline Surface Quality Assurance -- 3.6 Fourier-Transform Infrared Spectroscopy (FTIR) -- 3.6.1 Principle and Instrumentation -- 3.6.2 FTIR Results -- 3.6.3 Performance in Inline Surface Quality Assurance -- 3.7 Vibrometry Inspection -- 3.7.1 Principle and Instrumentation -- 3.7.2 Vibrometry Inspection Results -- 3.7.3 Final Remarks ---
5.3 Production User Case -- 5.3.1 Workflow Overview -- 5.3.2 Release Agent and Fingerprint Contamination -- 5.3.3 Bonding Operations -- 5.4 Repair User Case -- 5.4.1 Workflow Overview -- 5.4.2 Description of the Scarfing Operation -- 5.4.3 Application of the De-icer and Fingerprint Solutions -- 5.4.4 Description of the Bonded Repair Operations -- 5.5 Results of the Full-Scale Demonstration: The Representative Production User Case of a CFRP Stringer -- 5.5.1 Surface Quality Assessment -- 5.5.2 Bonding Quality Assessment -- 5.6 Results of the Full-Scale Demonstration: The Representative Bonded Repair User Case of an Airbus A350 Panel -- 5.6.1 Surface Quality Assessment After Scarfing -- 5.6.2 Bonded Repair Assessment -- 5.7 First Evaluation of ENDT Procedures Introducing a Probability of Detection Approach -- 5.7.1 Introduction and Motivation -- 5.7.2 Input Data for POD Calculation and Compiled Hypotheses -- 5.7.3 Examples of the First POD Evaluations -- 5.8 The Results of the Full-Scale Demonstration: An Overall Synopsis of the Technology’s Performance -- References -- 6 Integrating Extended Non-destructive Testing in the Life Cycle Management of Bonded Products-Some Perspectives -- 6.1 Introduction -- 6.2 Data Transfer Along the Product Life Cycle -- 6.3 Customization and Further Advancement of ENDT Tools and Procedures -- 6.4 Harmonized Presentation of ENDT Data and Metadata -- 6.5 Sensor Systems, Arrays and Networks for Assessing MoL Data -- 6.6 Synopsis -- References.
001895821
express
(Au-PeEL)EBL6637784
(MiAaPQ)EBC6637784
(OCoLC)1256238577

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC