Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Singapore : Springer Singapore Pte. Limited, 2022
1 online resource (278 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9789811677151 (electronic bk.)
ISBN 9789811677144
Print version: Tanaka, Isao The Plaston Concept Singapore : Springer Singapore Pte. Limited,c2022 ISBN 9789811677144
Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston’’ -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.
6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in a-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3< -- 11bar2 0> -- Basal Edge Dislocation -- 7.2.2 1/3< -- 11 bar2 0> -- Basal Screw Dislocation -- 7.2.3 < -- 1bar1 00> -- Edge Dislocation -- 7.2.4 1/3< -- bar1 101> -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References ---
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in d-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in a-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3 -- Basal Edge Dislocation -- 7.2.2 1/3 -- Basal Screw Dislocation -- 7.2.3 -- Edge Dislocation -- 7.2.4 1/3 -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References ---
8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons ---
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in d-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
001896573
express
(Au-PeEL)EBL6874868
(MiAaPQ)EBC6874868
(OCoLC)1294345308

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC