Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
London : IWA Publishing, 2020
1 online resource (474 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781789060768 (electronic bk.)
ISBN 9781789060751
Print version: Wang, Xiaochang C. Water-Wise Cities and Sustainable Water Systems London : IWA Publishing,c2020 ISBN 9781789060751
Intro -- Cover -- Contents -- Preface -- About the Editors -- Part I: Water Management Concepts and Principles -- Chapter 1: Pathways towards sustainable and resilient urban water systems -- 1.1 INTRODUCTION -- 1.2 THE EVOLUTION OF URBAN WATER SYSTEMS -- 1.3 PATHWAYS TOWARDS SUSTAINABLE WATER SYSTEMS -- 1.3.1 Decentralisation -- 1.3.2 Greening -- 1.3.3 Circular economy -- 1.3.3.1 The linear model -- 1.3.3.2 The circular economy model -- 1.3.4 Digitalisation -- 1.4 A NEW PARADIGM TOWARDS SUSTAINABLE WATER MANAGEMENT -- 1.4.1 Performance measures -- 1.4.2 Intervention framework -- 1.4.2.1 Four types of intervention -- 1.4.2.2 Analysis approaches -- 1.5 CONCLUSIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 2: Water-wise cities and sustainable water systems: Current problems and challenges -- 2.1 INTRODUCTION -- 2.2 FACTS OF OUR LIVING CONDITIONS ON THE EARTH -- 2.2.1 Population and cities -- 2.2.2 Available water resources -- 2.2.3 Imbalanced resource provision and consumption - biocapacity and ecological footprint as indicators -- 2.3 URBAN WATER SYSTEMS: HISTORY AND DEVELOPMENT -- 2.3.1 Water and human settlements -- 2.3.2 Pre-modern urban water systems -- 2.3.3 Modern urban water systems -- 2.3.3.1 Needs for drinking water purification -- 2.3.3.2 Needs for wastewater treatment -- 2.3.3.3 Needs for urban watershed management and aquatic system conservation -- 2.4 INTERNATIONAL ACTIONS FOR BUILDING WATER WISE CITIES -- 2.4.1 Cities of the future program implemented by the International Water Association -- 2.4.2 The IWA principles for water-wise cities -- 2.4.2.1 The five building blocks -- 2.4.2.1.1 Vision -- 2.4.2.1.2 Governance -- 2.4.2.1.3 Knowledge and capacities -- 2.4.2.1.4 Planning tools -- 2.4.2.1.5 Implementation tools -- 2.4.2.2 The four levels of actions -- 2.4.2.2.1 Level 1 - Regenerative water services.
2.4.2.2.2 Level 2 - Water sensitive urban design -- 2.4.2.2.3 Level 3 - Basin connected cities -- 2.4.2.2.4 Level 4 - Water-wise communities -- 2.4.3 Envisaged solutions -- 2.4.3.1 Systematic solutions -- 2.4.3.2 Water shortage and flood control countermeasures -- 2.4.3.3 Pollution control countermeasures -- 2.4.3.4 Countermeasures to enhance liveability -- 2.4.3.5 Human resources and capacity guarantee -- REFERENCES -- Chapter 3: Chinese version of water-wise cities: Sponge City initiative -- 3.1 INTRODUCTION -- 3.2 PROBLEMS TO SOLVE -- 3.3 CONVENTIONAL SOLUTIONS: GRAY ENGINEERING MEASURES -- 3.3.1 Urban water system 1.0 -- 3.3.2 Urban water system 2.0 -- 3.4 TOWARDS A MULTI-PURPOSEWATER-WISE SYSTEM: SPONGE CITY -- 3.4.1 Urban water system 3.0 as a new approach -- 3.4.1.1 Sustainable water services -- 3.4.1.2 Improvement of overall environmental quality, resilience, and liveability in urban areas -- 3.4.1.3 Water-wise communities -- 3.4.1.4 Reviving water culture -- 3.4.2 Main functional elements of the water system 3.0 -- 3.4.2.1 Sponge infrastructure -- 3.4.2.2 Decentralized sewage system -- 3.4.2.3 Fit-for-purpose water supply system -- 3.4.2.4 Near-natural ecological zones -- 3.4.2.5 Intelligent water management system -- 3.5 FUTURE PERSPECTIVES -- 3.5.1 Enhancing system monitoring and evaluation and promoting multi-channel cooperation management -- 3.5.2 Developing decision support tools for sustainable implementation of sponge city -- 3.5.3 Valuing Sponge City ecosystem services -- 3.5.4 Developing local guidelines and standards for Sponge City implementation -- 3.5.5 Promoting Sponge City construction in watershed-scales based on data and information sharing -- REFERENCES -- Chapter 4: US version of water-wise cities: Low impact development -- 4.1 INTRODUCTION TO REGULATORY HISTORY -- 4.2 A SHIFT IN STORMWATER MANAGEMENT IN THE UNITED STATES.
5.2.2.3 Stormwater biofilters -- 5.2.2.3.1 A popular WSUD technology for stormwater treatment -- 5.2.2.3.2 A base of scientific research -- 5.2.2.3.3 Recreational stormwater ponds -- 5.3 CASE STUDY 2: HOW THIS WAS APPLIED OUTSIDE OF AUSTRALIA -- 5.3.1 Introduction of EastHigh stormwater treatment systems -- 5.3.2 Landscaping -- 5.3.3 Local tailoring research -- 5.3.4 The main parts of the biofilter -- 5.3.4.1 Inflow pit -- 5.3.4.2 Media -- 5.3.4.3 Plants -- 5.3.4.4 Outflow -- 5.3.4.5 Monitoring -- 5.3.4.6 Outflow pollutant concentration -- 5.4 SUMMARY -- ACKNOWLEDGEMENT -- REFERENCES -- Part II: New Paradigm of Systems Thinking and Technology Advances -- Chapter 6: Water cycle management for building water-wise cities -- 6.1 INTRODUCTION -- 6.2 THINGS TO LEARN FROM THE NATURAL HYDROLOGICAL CYCLE -- 6.2.1 Natural hydrological cycle -- 6.2.1.1 Global hydrological cycle -- 6.2.1.2 Hydrological cycle of a watershed -- 6.2.2 Functions of the hydrological cycle -- 6.2.2.1 Water quantity secured by the hydrological cycle -- 6.2.2.2 Water quality secured by the hydrological cycle -- 6.2.3 Thermodynamic characteristics of the hydrological cycle -- 6.2.4 Human disturbance of the hydrological cycle -- 6.3 URBAN WATER CYCLE -- 6.3.1 Characteristics of the urban water cycle -- 6.3.2 Conventional modern urban water system -- 6.3.3 Urban water system toward a new paradigm -- 6.4 CONCEPTUAL SCHEME OF WATER CYCLE MANAGEMENT -- 6.4.1 Resource management -- 6.4.2 Quality management -- 6.4.3 Water use management -- 6.4.4 Discharge management -- 6.4.5 Overall management -- 6.5 WCM CONCEPT APPLICATION FOR WATER SOURCE ENLARGEMENT TO RESTORE AWATER CITY -- 6.5.1 Background -- 6.5.2 Water source enlargement plan -- 6.5.2.1 Requirement of source enlargement -- 6.5.2.2 Source enlargement measures -- 6.5.2.2.1 Alternative water resource development.
8.3.2 Criteria 2 (C2): cost per unit of water.
4.2.1 Pollution prevention, source control, and public education -- 4.2.2 Volume reduction -- 4.2.3 Pollution retention by soil and potential for soil and groundwater contamination -- 4.2.3.1 Nutrients -- 4.2.3.2 Metals -- 4.2.3.3 Suspended solids -- 4.2.3.4 Organic compounds -- 4.2.3.5 Pathogens -- 4.2.3.6 Chloride -- 4.2.4 Summary of groundwater contamination due to stormwater infiltration -- 4.3 LID APPLICATIONS -- 4.3.1 Combined sewer overflows -- 4.3.2 Eutrophication in fresh surface water bodies -- 4.3.3 Hypoxia in coastal waters -- 4.3.4 Climate change adaptation -- 4.3.5 Selection of an LID practice -- 4.4 TECHNOLOGICAL ASPECTS OF LOW IMPACT DEVELOPMENT PRACTICES -- 4.4.1 Common practices -- 4.4.1.1 Infiltration basins, trenches, and chambers -- 4.4.1.2 Permeable pavements -- 4.4.1.3 Bioretention -- 4.4.1.4 Swales and roadside ditches -- 4.4.1.5 Green roofs -- 4.4.1.6 Rainwater harvesting -- 4.4.1.7 Maintenance and pre-treatment -- 4.4.1.7.1 Maintenance -- 4.4.1.7.2 Why pre-treatment -- 4.4.1.7.3 Commercial products -- 4.4.2 Emerging LID practices -- 4.4.2.1 Enhanced media -- 4.4.2.1.1 Iron -- 4.4.2.1.2 Aluminum oxide -- 4.4.2.1.3 Water treatment residuals -- 4.4.2.1.4 Activated carbon and biochar -- 4.4.2.2 Floating islands -- 4.4.2.3 Rain gardens for nitrogen removal -- 4.4.3 Future perspectives -- 4.4.3.1 Climate change -- 4.4.3.2 Combined sewer overflows -- 4.4.3.3 Dynamic design -- 4.4.3.4 Advances in enhanced media -- 4.4.3.5 Source reduction -- REFERENCES -- Chapter 5: Australian case of water sensitive city and its adaptation in China -- 5.1 INTRODUCTION -- 5.2 CASE STUDY 1: MONASH CARPARK STORMWATER TREATMENT SYSTEMS -- 5.2.1 A treatment train that provides both pollution management and landscape value -- 5.2.2 Key components of the treatment train -- 5.2.2.1 Rainwater tank -- 5.2.2.2 Sedimentation tank.
6.5.2.2.2 Increasing water use efficiency -- 6.5.2.3 Formulation of a quasi-natural water cycle for water source enlargement -- 6.5.2.4 Implementation plan -- 6.5.2.4.1 Water supply network -- 6.5.2.4.2 Source water distribution -- 6.5.2.4.3 Realization of cascading water use -- 6.5.2.4.4 Water quality protection -- 6.5.3 Effects of water source enlargement -- REFERENCES -- Chapter 7: Resilient infrastructures for reducing urban flooding risks -- 7.1 INTRODUCTION -- 7.1.1 Definition of main terms -- 7.2 REVIEW OF THE CONTEXT -- 7.2.1 Flooding hazard -- 7.2.2 Infrastructure resilience from a system perspective -- 7.2.2.1 Infrastructure risk and resilience -- 7.2.3 Adaptation strategies and adaptation benefits -- 7.2.3.1 Monetary and non-monetary benefits from adaptation -- 7.3 FLOOD-WISE USE OF URBAN INFRASTRUCTURE -- 7.3.1 Flood risk management in Jingdezhen -- 7.3.2 Costs and benefits from adaptation measures -- 7.4 DISCUSSION -- 7.4.1 Next frontier of research -- 7.5 CONCLUSION -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 8: Building resilience in water supply infrastructure in the face of future uncertainties: Insight from Cape Town -- 8.1 INTRODUCTION -- 8.2 THE DROUGHT IN CAPE TOWN -- 8.2.1 Water resources -- 8.2.2 Water system vulnerabilities -- 8.2.2.1 Climate variability -- 8.2.2.2 Population growth and urbanisation -- 8.2.2.3 Water supply and demand management -- 8.2.2.4 Water pricing and social inequality -- 8.2.2.5 Invasive alien plants species -- 8.2.3 Demand management -- 8.2.4 Long-term solutions - supply augmentation -- 8.3 OPTION CHARACTERISATION ANALYSIS -- 8.3.1 Criteria 1 (C1): yield (m3/day) -- 8.3.1.1 Option 1: desalination plant -- 8.3.1.2 Option 2: groundwater augmentation scheme -- 8.3.1.3 Option 3: wastewater reuse treatment plant -- 8.3.1.4 Option 4: surface water transfer scheme.
001896819
express
(Au-PeEL)EBL6913843
(MiAaPQ)EBC6913843
(OCoLC)1253437502

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC