Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 17.02.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
London : IWA Publishing, 2020
1 online resource (545 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781789060966 (electronic bk.)
ISBN 9781789060959
Integrated Environmental Technology Ser.
Print version: Lens, Piet Environmental Technologies to Treat Sulfur Pollution London : IWA Publishing,c2020 ISBN 9781789060959
Cover -- Contents -- Preface -- List of Contributors -- Part I: Introduction -- Chapter 1: Environmental technologies to treat sulfur pollution: How to read this book? -- 1.1 INTRODUCTION -- 1.2 THE SULFUR CYCLE -- 1.3 SULFUR-RELATED PROBLEMS -- 1.4 TECHNOLOGIES TO DESULFURISE RESOURCES -- 1.5 TREATMENT OF POLLUTION BY SULFUROUS COMPOUNDS -- 1.6 USE OF SULFUR CYCLE CONVERSIONS IN ADVANCED WASTEWATER TREATMENT AND RESOURCE RECOVERY -- REFERENCES -- Part II: The Sulfur Cycle -- Chapter 2: The chemical sulfur cycle -- 2.1 INTRODUCTION -- 2.1.1 Oxidation states and redox potentials -- 2.1.2 Catenation of sulfur atoms -- 2.2 ELEMENTAL SULFUR AND HYDROPHOBIC SULFUR SOLS -- 2.2.1 Sulfur allotropes -- 2.2.2 Liquid sulfur -- 2.2.3 Gaseous sulfur -- 2.2.4 Sulfur sols from elemental sulfur (Weimarn sols) -- 2.3 SULFIDE AND POLYSULFIDES -- 2.3.1 Hydrogen sulfide and sulfide ions -- 2.3.2 Polysulfides and polysulfanes -- 2.3.3 Polysulfido complexes of transition metals and ion pairs -- 2.3.4 Oxidation of sulfide and polysulfide ions by metal ions -- 2.4 SULFITES, THIOSULFATES, DITHIONITES AND DITHIONATES -- 2.4.1 Sulfur dioxide, sulfite and disulfite ions as well as sulfurous and sulfonic acids -- 2.4.2 Thiosulfates and thiosulfuric acid -- 2.4.3 Dithionites and dithionous acid -- 2.4.4 Dithionates and dithionic acid -- 2.5 POLYTHIONATES AND HYDROPHILIC SULFUR SOLS -- 2.5.1 Polythionates and polythionic acids -- 2.5.2 Hydrophilic sulfur sols (Raffo and Selmi sols) -- 2.6 SULFURIC ACID AND SULFATES -- 2.7 DISPROPORTIONATION OF ELEMENTAL SULFUR IN WATER -- 2.8 ORGANIC DERIVATIVES OF THE TYPE R-Sn-R (ORGANOPOLYSULFANES) -- 2.8.1 Synthetic polysulfanes -- 2.8.2 Naturally occurring polysulfanes -- REFERENCES -- Chapter 3: A biochemical view on the biological sulfur cycle -- 3.1 INTRODUCTION -- 3.2 IMPORTANT INORGANIC SULFUR COMPOUNDS OF THE BIOLOGICAL SULFUR CYCLE.
3.3 THE BIOLOGICAL SULFUR CYCLE -- 3.4 DISSIMILATORY REDUCTION OF OXIDIZED SULFUR COMPOUNDS -- 3.4.1 Dissimilatory reduction of sulfate -- 3.4.2 Dissimilatory reduction of sulfur cycle intermediates -- 3.4.2.1 Dissimilatory reduction of sulfite -- 3.4.2.2 Dissimilatory reduction of thiosulfate -- 3.4.2.3 Dissimilatory reduction of tetrathionate -- 3.4.2.4 Dissimilatory reduction of sulfur and polysulfides -- 3.5 DISSIMILATORY OXIDATION OF REDUCED SULFUR COMPOUNDS -- 3.5.1 Oxidation of thiosulfate -- 3.5.1.1 Oxidation of thiosulfate to tetrathionate -- 3.5.1.2 Oxidation of thiosulfate to sulfate: the Sox system -- 3.5.1.3 Role of Sox proteins for oxidation of sulfur compounds other than thiosulfate -- 3.5.2 Tetrathionate oxidation -- 3.5.3 Oxidation of sulfide and polysulfides -- 3.5.3.1 Sulfide:quinone oxidoreductase -- 3.5.3.2 Flavocytochrome c and multitude of sulfide-oxidizing systems -- 3.5.4 Oxidation of external sulfur -- 3.5.5 Biogenic sulfur globules -- 3.5.6 Sox-independent, cytoplasmic oxidation of sulfane sulfur to sulfite -- 3.5.6.1 rDsr pathway -- 3.5.6.2 sHdr pathway -- 3.5.6.3 Formation of sulfite via reactions involving molecular oxygen -- 3.5.6.3.1 Sulfur dioxygenase -- 3.5.6.3.2 Sulfur oxygenase reductase -- 3.5.7 Oxidation of sulfite -- 3.5.7.1 Oxidation of sulfite outside of the cytoplasm -- 3.5.7.2 Oxidation of sulfite in the cytoplasm -- 3.6 SULFUR DISPROPORTIONATION -- ACKNOWLEDGEMENTS -- REFERENCES -- Part III: Sulfur-Related Problems -- Chapter 4: Sulfur transformations in sewer networks: effects, prediction and mitigation of impacts -- 4.1 INTRODUCTION -- 4.2 SEWER NETWORK CHARACTERISTICS AND RELATED POTENTIAL FOR SULFUR TRANSFORMATIONS -- 4.2.1 Microbial and chemical process characteristics of sewer networks -- 4.2.2 Wastewater characteristics -- 4.2.3 Sewer networks -- 4.2.4 Microbial and chemical processes.
4.2.5 Transport characteristics -- 4.2.6 Formulation of the sulfur cycle in sewer networks -- 4.3 EFFECTS OF HYDROGEN SULFIDE IN SEWERS -- 4.4 FACTORS AFFECTING SULFIDE RELATED PROBLEMS IN SEWERS -- 4.4.1 Presence of sulfate -- 4.4.2 Temperature -- 4.4.3 Dissolved oxygen -- 4.4.4 pH -- 4.4.5 Area-to-volume ratio of sewer pipes -- 4.4.6 Quality and quantity of biodegradable organic matter -- 4.4.7 Anaerobic residence time in the sewer network -- 4.4.8 Flow velocity -- 4.5 PREDICTION OF SULFIDE RELATED ADVERSE EFFECTS IN SEWERS -- 4.5.1 Empirical equations for sulfide formation in pressure sewers and full flowing gravity sewers -- 4.5.2 Simple formulated "risk models" for sulfide build-up in gravity sewers -- 4.5.3 Empirical equations for sulfide formation in gravity sewers -- 4.5.4 Analytical and conceptual formulated sewer process models -- 4.5.5 Computational and probabilistic models for sewer deterioration and service life -- 4.5.6 Final comments for prediction of sulfide related impacts on sewers -- 4.6 METHODS FOR CONTROL OF SULFIDE PROBLEMS IN SEWERS -- 4.6.1 Suppression or inhibition of sulfide formation -- 4.6.1.1 pH increase -- 4.6.1.2 Mechanical removal of biofilm -- 4.6.1.3 Injection of oxygen or nitrate dosing -- 4.6.2 Reduction of the sulfide concentration in the water phase -- 4.6.2.1 Addition of electron acceptors -- 4.6.2.2 Iron salt addition -- 4.6.3 Reduction or dilution of sewer gases -- REFERENCES -- Chapter 5: Corrosion and sulfur-related bacteria -- 5.1 INTRODUCTION -- 5.2 MECHANISMS -- 5.2.1 Corrosion of concrete -- 5.2.1.1 Formation of aqueous hydrogen sulfide -- 5.2.1.2 Radiation and buildup of hydrogen sulfide -- 5.2.1.3 Generation of sulfuric acid -- 5.2.1.4 Deterioration of concrete materials -- 5.2.2 Corrosion of carbon steel -- 5.2.2.1 Cathodic depolarization.
5.2.2.2 Chemical microbiologically influenced corrosion (CMIC) -- 5.2.2.3 Electrical microbiologically influenced corrosion (EMIC) -- 5.2.2.4 SOB influenced corrosion -- 5.3 MIC OBSERVATIONS -- 5.3.1 MIC of concrete -- 5.3.1.1 Corrosion areas -- 5.3.1.2 Corrosion rates -- 5.3.1.3 Cement types -- 5.3.1.4 Siliceous and calcareous aggregates -- 5.3.2 MIC of carbon steel -- 5.3.2.1 Corrosion caused by SRB -- 5.3.2.2 Corrosion caused by SOB -- 5.4 MITIGATION AND CONTROL MEASURES -- 5.4.1 For MIC of concrete -- 5.4.1.1 Improving sewer design features -- 5.4.1.2 Controlling sulfide in the sewer environment -- 5.4.1.3 Improving the performance of concrete -- 5.4.2 For MIC of carbon steel -- 5.4.2.1 Biocides -- 5.4.2.2 Inhibitors -- 5.4.2.3 Biological inhibition -- 5.4.2.4 Periodic pigging/assuring cleanliness -- 5.4.2.5 Protective coatings -- 5.4.2.6 Cathodic protection -- REFERENCES -- Chapter 6: Biological treatment of organic sulfate-rich wastewaters -- 6.1 INTRODUCTION -- 6.2 ANAEROBIC TREATMENT OF SULFATE-RICH WASTEWATERS -- 6.2.1 Competition between sulfate-reducing bacteria and methanogenic archaea -- 6.2.2 Sulfide toxicity in anaerobic digestion -- 6.2.3 Techniques for quantification of sulfide toxicity on microbial populations involved in anaerobic digestion -- 6.2.3.1 Specific methanogenic activity/toxicity tests -- 6.2.3.2 Specific sulfidogenic activity/toxicity tests -- 6.2.3.3 Determination of kinetic growth properties of microbial populations -- 6.2.4 Sulfite toxicity -- 6.2.5 Cation inhibition in anaerobic digestion -- 6.3 PROCESS TECHNOLOGY OF TREATMENT OF ORGANIC SULFATE-RICH WASTEWATERS -- 6.3.1 Modelling the effect of sulfide toxicity in anaerobic digestion -- 6.3.2 Alleviating sulfide toxicity -- 6.4 DOWNSTREAM PROCESSES FOR BIOLOGICAL SULFATE-REDUCTION EFFLUENTS -- 6.4.1 Sulfide partial oxidation to elemental sulfur.
6.4.2 Sulfide oxidation using nitrate as electron acceptor -- 6.5 SRB-BASED BIOREMEDIATION TECHNIQUES -- 6.5.1 Treatment of inorganic sulfate-rich wastewaters -- 6.5.2 Heavy metal removal -- 6.5.3 Biodegradation of xenobiotics -- 6.5.4 Micro-aerobic treatment of sulfate-rich wastewaters -- 6.6 INTEGRATION OF SULFATE REDUCTION IN RESOURCE RECOVERY TECHNOLOGIES -- 6.6.1 Bio-commodities -- 6.6.2 Bio-electricity -- 6.6.3 Biomining and nanoparticles biosynthesis -- REFERENCES -- Chapter 7: Biological removal of sulfurous compounds and metals from inorganic wastewaters -- 7.1 INTRODUCTION -- 7.2 SULFUR-RICH WASTEWATERS ASSOCIATED WITH MINING ACTIVITIES -- 7.2.1 Origin of acid mine drainage -- 7.2.2 Chemical characteristics of AMD -- 7.2.3 Impact of AMD on the biosphere -- 7.3 PREVENTION, CONTAINMENT AND TREATMENT OF AMD -- 7.3.1 Non-biological prevention and remediation systems -- 7.3.2 Biological remediation systems -- 7.4 SULFATE REDUCTION IN MINE DRAINAGE WATERS AND OTHER EXTREMELY ACIDIC ENVIRONMENTS -- 7.4.1 Physiological constraints on sulfate- and sulfur-reduction -- 7.4.2 Acidophilic sulfate- and sulfur-reducing prokaryotes -- 7.5 BIOENGINEERING APPROACHES FOR REMEDIATING SULFATE-RICH MINE WATERS -- 7.5.1 Constructed wetlands -- 7.5.2 Bioreactor systems -- 7.5.3 Pros and cons of the options available for remediating acidic sulfurous wastewaters -- REFERENCES -- Chapter 8: Electrochemical removal of sulfur pollution -- 8.1 INTRODUCTION -- 8.2 ENVIRONMENTAL ELECTROCHEMISTRY TO TREAT SULFUR POLLUTION -- 8.2.1 Brief introduction to environmental electrochemistry -- 8.2.2 Basics of electrochemical engineering for environmental applications -- 8.2.2.1 The electrochemical cell -- 8.2.2.2 Thermodynamics of electrochemical reactions and the electrode potential -- 8.2.2.3 Overpotential and ohmic resistance.
8.2.2.4 Efficiencies of the electrochemical process.
001896979
express
Preface xix // List of Contributors xxi // Part I: Introduction Chapter 1 // Environmental technologies to treat sulfur pollution: // How to read this book? 3 // Piet N. L. Lens // 1.1 Introduction 3 // 1.2 The Sulfur Cycle 3 // 1.3 Sulfur-Related Problems 6 // 1.4 Technologies to Desulfurise Resources 6 // 1.5 Treatment of Pollution by Sulfurous Compounds 6 // 1.6 Use of Sulfur Cycle Conversions in Advanced Wastewater // Treatment and Resource Recovery 7 // References 8 // Part II: The Sulfur Cycle Chapter 2 // The chemical sulfur cycle 11 // Ralf Steudel // 2.1 Introduction 11 // 2.1.1 Oxidation states and redox potentials 12 // 2.1.2 Catenation of sulfur atoms 14 // 2.2 Elemental Sulfur and Hydrophobic Sulfur Sols 15 // 2.2.1 Sulfur allotropes 15 // 2.2.2 Liquid sulfur 17 // 2.2.3 Gaseous sulfur 20 // 2.2.4 Sulfur sols from elemental sulfur (Weimarn sols) 20 // 2.3 Sulfide and Polysulfides 22 // 2.3.1 Hydrogen sulfide and sulfide ions 22 // 2.3.2 Polysulfides and polysulfanes 26 // 2.3.3 Polysulfido complexes of transition metals // and ion pairs 31 // 2.3.4 Oxidation of sulfide and polysulfide ions // by metal ions 32 // 2.4 Sulfites, Thiosulfates, Dithionites and Dithionates 34 // 2.4.1 Sulfur dioxide, sulfite and disulfite ions as well // as sulfurous and sulfonic acids 34 // 2.4.2 Thiosulfates and thiosulfuric acid 36 // 2.4.3 Dithionites and dithionous acid 38 // 2.4.4 Dithionates and dithionic acid 39 // 2.5 Polythionates and Hydrophilic Sulfur Sols 39 // 2.5.1 Polythionates and polythionic acids 39 // 2.5.2 Hydrophilic sulfur sols (Raffo and Selmi sols) 40 // 2.6 Sulfuric Acid and Sulfates 42 // 2.7 Disproportionation of Elemental Sulfur in Water 44 // 2.8 Organic Derivatives of the Type R-Sn-R // (Organopolysulfanes) 45 // 2.8.1 Synthetic polysulfanes 45 // 2.8.2 Naturally occurring polysulfanes 46 // References 48 //
Chapter 3 // A biochemical view on the biological sulfur cycle 55 // Christiane Dahl // 3.1 Introduction 55 // 3.2 Important Inorganic Sulfur Compounds of the Biological // Sulfur Cycle 56 // 3.3 The Biological Sulfur Cycle 59 // 3.4 Dissimilatory Reduction of Oxidized Sulfur Compounds 61 // 3.4.1 Dissimilatory reduction of sulfate 61 // 3.4.2 Dissimilatory reduction of sulfur cycle intermediates 64 // 3.5 Dissimilatory Oxidation of Reduced Sulfur Compounds 67 // 3.5.1 Oxidation of thiosulfate 69 // 3.5.2 Tetrathionate oxidation 74 // 3.5.3 Oxidation of sulfide and polysulfides 74 // 3.5.4 Oxidation of external sulfur 76 // 3.5.5 Biogenic sulfur globules 76 // 3.5.6 Sox-independent, cytoplasmic oxidation of sulfane sulfur to sulfite 77 // 3.5.7 Oxidation of sulfite 79 // 3.6 Sulfur Disproportionation 81 // Acknowledgements 81 // References 81 // Part III: Sulfur-Related Problems // Chapter 4 // Sulfur transformations in sewer networks: effects, prediction and mitigation of impacts 99 // Thorkild Hvitved-Jacobsen // 4.1 Introduction 99 // 4.2 Sewer Network Characteristics and Related Potential // for Sulfur Transformations 100 // 4.2.1 Microbial and chemical process characteristics // of sewer networks 100 // 4.2.2 Wastewater characteristics 102 // 4.2.3 Sewer networks 103 // 4.2.4 Microbial and chemical processes 103 // 4.2.5 Transport characteristics 106 // 4.2.6 Formulation of the sulfur cycle in sewer networks 106 // 4.3 Effects of Hydrogen Sulfide in Sewers 107 // 4.4 Factors Affecting Sulfide Related Problems in Sewers 111 // 4.4.1 Presence of sulfate 112 // 4.4.2 Temperature 112 // 4.4.3 Dissolved oxygen 113 // 4.4.4 pH 113 // x Environmental Technologies to Treat Sulfur Pollution // 4.4.5 Area-to-volume ratio of sewer pipes 113 // 4.4.6 Quality and quantity of biodegradable organic matter .. 114 // 4.4.7 Anaerobic residence time in the sewer network 114 //
4.4.8 Flow velocity 114 // 4.5 Prediction of Sulfide Related Adverse Effects in Sewers 115 // 4.5.1 Empirical equations for sulfide formation in pressure sewers and full flowing gravity sewers 116 // 4.5.2 Simple formulated "risk models" for sulfide build-up in gravity sewers 116 // 4.5.3 Empirical equations for sulfide formation in gravity sewers 119 // 4.5.4 Analytical and conceptual formulated sewer process models 120 // 4.5.5 Computational and probabilistic models for sewer deterioration and service life 121 // 4.5.6 Final comments for prediction of sulfide related impacts on sewers 122 // 4.6 Methods for Control of Sulfide Problems in Sewers 122 // 4.6.1 Suppression or inhibition of sulfide formation 123 // 4.6.2 Reduction of the sulfide concentration // in the water phase 126 // 4.6.3 Reduction or dilution of sewer gases 127 // References 128 // Chapter 5 // Corrosion and sulfur-related bacteria 133 // Min Wu, Tian Wang and Shunxiang Wang // 5.1 Introduction 133 // 5.2 Mechanisms 134 // 5.2.1 Corrosion of concrete 135 // 5.2.2 Corrosion of carbon steel 140 // 5.3 MIC Observations 145 // 5.3.1 MIC of concrete 145 // 5.3.2 MIC of carbon steel 149 // 5.4 Mitigation and Control Measures 152 // 5.4.1 For MIC of concrete 152 // 5.4.2 For MIC of carbon steel 155 // References 157 // Chapter 6 // Biological treatment of organic sulfate-rich wastewaters . 167 // Rachel ?. Costa, Vincent O’flaherty and Piet N. L. Lens // 6.1 Introduction 167 // Contents xi // 6.2 Anaerobic Treatment of Sulfate-Rich Wastewaters 170 // 6.2.1 Competition between sulfate-reducing bacteria and // methanogenic archaea 170 // 6.2.2 Sulfide toxicity in anaerobic digestion 175 // 6.2.3 Techniques for quantification of sulfide toxicity on // microbial populations involved in anaerobic digestion 179 // 6.2.4 Sulfite toxicity 182 // 6.2.5 Cation inhibition in anaerobic digestion 183 //
6.3 Process Technology of Treatment of Organic Sulfate-Rich Wastewaters 184 // 6.3.1 Modelling the effect of sulfide toxicity in anaerobic // digestion 184 // 6.3.2 Alleviating sulfide toxicity 185 // 6.4 Downstream Processes for Biological Sulfate-Reduction // Effluents 190 // 6.4.1 Sulfide partial oxidation to elemental sulfur 190 // 6.4.2 Sulfide oxidation using nitrate as electron acceptor 190 // 6.5 SRB-Based Bioremediation Techniques 191 // 6.5.1 Treatment of inorganic sulfate-rich wastewaters 192 // 6.5.2 Heavy metal removal 192 // 6.5.3 Biodegradation of xenobiotics 193 // 6.5.4 Micro-aerobic treatment of sulfate-rich wastewaters 194 // 6.6 Integration of Sulfate Reduction in Resource Recovery Technologies 195 // 6.6.1 Bio-commodities 195 // 6.6.2 Bio-electricity 196 // 6.6.3 Biomining and nanoparticles biosynthesis 196 // References 197 // Chapter 7 // Biological removal of sulfurous compounds and // metals from inorganic wastewaters 215 // David Barrie Johnson and Ana Laura Santos // 7.1 Introduction 215 // 7.2 Sulfur-Rich Wastewaters Associated with Mining Activities 216 // 7.2.1 Origin of acid mine drainage 216 // 7.2.2 Chemical characteristics of AMD 221 // 7.2.3 Impact of AMD on the biosphere 222 // 7.3 Prevention, Containment and Treatment of AMD 224 // 7.3.1 Non-biological prevention and remediation systems 224 // 7.3.2 Biological remediation systems 226 // 7.4 Sulfate Reduction in Mine Drainage Waters and Other Extremely Acidic Environments 226 // 7.4.1 Physiological constraints on sulfate- and // sulfur-reduction 228 // 7.4.2 Acidophilic sulfate- and sulfur-reducing prokaryotes 230 // 7.5 Bioengineering Approaches for Remediating Sulfate-Rich // Mine Waters 232 // 7.5.1 Constructed wetlands 232 // 7.5.2 Bioreactor systems 234 // 7.5.3 Pros and cons of the options available for remediating // acidic sulfurous wastewaters 240 // References 240 //
Chapter 8 // Electrochemical removal of sulfur pollution 247 // Eleftheria Ntagia, Antonin Prévoteau and Korneel Rabaey // 8.1 Introduction 247 // 8.2 Environmental Electrochemistry to Treat Sulfur Pollution 248 // 8.2.1 Brief introduction to environmental // electrochemistry 248 // 8.2.2 Basics of electrochemical engineering for // environmental applications 249 // 8.2.3 Oxidation and reduction reactions involving sulfur // species 256 // 8.3 Abiotic Electrochemical Treatment of Sulfur Species 257 // 8.3.1 Introduction 257 // 8.3.2 Sulfide removal with electrolysis cells 259 // 8.3.3 Electrochemical sulfide oxidation 263 // 8.4 Bioelectrochemical Treatment of Sulfur Species 265 // 8.4.1 Introduction 265 // 8.4.2 Bioanodic sulfide removal 267 // 8.4.3 Biocathodic sulfate removal 268 // 8.5 Outlook 270 // References 271 // Chapter 9 // Anaerobic treatment of sulfate-rich wastewaters: process modeling and control 277 // A. Robles, S. Vinardell, J. Serralta, N. Bernet, P. N. L. Lens, J. P. Steyer and S. Astals // 9.1 Introduction 277 // Contents xiii // 9.2 Models 278 // 9.2.1 Models at reactor level 279 // 9.2.2 Models at biofilm level 290 // 9.3 On-Line Monitoring 292 // 9.3.1 Sensors for sulfurous compounds 292 // 9.3.2 ln-situ sulfate sensors 294 // 9.3.3 ln-situ sulfurous compounds sensors 295 // 9.3.4 Biosensors 297 // 9.4 Control 298 // 9.4.1 Process control in AD 298 // 9.4.2 Advanced closed-loop control of AD processes 299 // 9.4.3 Process control of sulfate-reducing bioprocesses 301 // References 307 // Part IV: Treatment of Gases Polluted by Sulfurous Compounds // Chapter 10 // Measurement and assessment of odorous sulfur compounds 321 // James E. Hayes, Hung V. Le, Ruth M. Fisher, Nhat Le-Minh and Richard M. Stuetz // 10.1 Introduction 321 // 10.1.1 Odour of sulfur compounds 321 // 10.1.2 The impact of sulfur odour 322 //
10.2 Establishing Effective VSC Emission Analysis 323 // 10.2.1 Introduction to VSC sample collection and storage 323 // 10.2.2 Solid phase microextraction 324 // 10.2.3 Sorbent tubes 325 // 10.2.4 Canisters 325 // 10.2.5 Sample bags 326 // 10.2.6 Comparative advantages and disadvantages // of VSC sample collection and storage methods 327 // 10.3 Analytical and Sensorial Methodologies for Determining // VSC Speciation 330 // 10.3.1 Gas chromatography 330 // 10.3.2 Sensors 332 // 10.3.3 Olfactometry/sensorial measurement 332 // 10.3.4 Hedonic odour qualities of VSCs 334 // 10.4 Emission Rate Estimation, Mapping and Dispersion // Modelling 334 // 10.4.1 Emission rate estimation 334 // 10.4.2 Mapping and dispersion modelling 336 // References 336 // Chapter 11 // Biological H2S removal from gases 345 // Markéta Andreides, Lucie Pokorná-Krayzelová, Jan Bartáček and Pavel Jeníček // 11.1 Introduction 345 // 11.2 Fundamentals of Biologically Driven Processes for // H2S Removal from Gases 346 // 11.2.1 Mechanisms of the oxidation of reduced sulfur compounds 346 // 11.2.2 Microorganisms involved in H2S removal 348 // 11.3 Technologies for H2S Removal from Gases 350 // 11.3.1 Physicochemical methods 350 // 11.3.2 Biological methods 351 // 11.4 Modifications of Anaerobic Fermenters to Decrease the H2S // Concentration in Biogas 355 // 11.4.1 Two-stage anaerobic digestion 355 // 11.4.2 Microaeration 356 // 11.5 Removal of Organic Sulfur Compounds from Biogas 364 // 11.5.1 Emissions of organic sulfur compounds 364 // 11.5.2 VSC removal technologies 365 // References 365 // Part V: Sulfur Cycle Conversions for Advanced Wastewater Treatment and Resource Recovery // Chapter 12 // The role of sulfur radicals in advanced oxidation processes 379 // Aizhong Ding, Wenjuan Jia, Lirong Cheng, Dayang Wang, Lei Zheng and Shurong Zhang //
12.1 An Overview of Sulfur Radicals in Advanced Oxidation 379 // 12.1.1 Introduction to sulfur radicals 379 // 12.1.2 Characteristics of SO42- 380 // 12.1.3 Detection of SO42- 380 // 12.1.4 The application of SO42- in advanced oxidation // processes 381 // 12.2 Generation of the SO42- Radical 382 // 12.2.1 Overview of SO42-" radicals generation in // advanced oxidation processes 382 // 12.2.2 Homogeneous activation of PS 383 // 12.2.3 Heterogeneous system for activating PS 388 // 12.3 Mechanisms of SO4 Oxidation 389 // 12.3.1 Comparison of sulfate radicals with other oxidizing substances 389 // 12.3.2 Removal mechanism of organic pollutants by SO4 radicals 391 // 12.3.3 Effect of coexisting inorganic ions 393 // 12.3.4 Synergetic removal of multiple pollutants 394 // 12.4 Research Prospect of Sulfur Radicals in Advanced // Oxidation 396 // Acknowledgements 396 // References 396 // Chapter 13 // Interactions of the sulfur and nitrogen cycles: microbiology and process technology 403 // Philippe M. Chazal, Maria F. Carboni and Piet N. L. Lens // 13.1 Introduction 403 // 13.1.1 The nitrogen cycle 403 // 13.1.2 Anthropic alteration of the nitrogen cycle and its environmental consequences 405 // 13.1.3 Nitrate pollution abatement techniques 406 // 13.2 Microbial Aspects of Autotrophic Denitrification Processes 407 // 13.2.1 Sulfur-oxidizing bacteria 407 // 13.2.2 Thiobacillus denitrificans, a denitrifying "colorless sulfur bacterium" 408 // 13.2.3 Other sulfur-oxidizing and nitrate-utilizing microorganisms 411 // 13.2.4 Denitrification in natural environments and at oxygen interfaces 412 // 13.3 Technological Aspects of Autotrophic Denitrification Processes 413 // 13.3.1 Process parameters 413 // 13.3.2 Process design - drinking water 414 // 13.3.3 Process design - wastewater treatment 421 // 13.3.4 Process design - waste gas treatment 428 //
13.3.5 Optimization of the fixed-bed reactor design 429 // 13.4 Nitrogen Conversions in Anaerobic Reactors Treating // Sulfate-Rich Wastewater 431 // 13.4.1 Effect of sulfide pn aerobic post-treatment 431 // 13.4.2 Combined denitrification and methanogenesis 431 // 13.4.3 Ammonification 431 // 13.4.4 Combined denitrification and sulfidogenesis 432 // 13.4.5 Role of sulfur compounds in anaerobic ammonium oxidation 432 // References 433 // Chapter 14 // Synthesis and application of sulfur nanoparticles 445 // Sudeshna Saikia and Piet N. L. Lens // 14.1 Introduction 445 // 14.2 Synthesis of Sulfur Nanoparticles (SNPs) 447 // 14.2.1 Physico-chemical methods 447 // 14.2.2 Biological SNP production methods 457 // 14.3 Characterisation of SNPs 459 // 14.3.1 Mechanical method 459 // 14.3.2 Microemulsions based method 460 // 14.3.3 Surfactant assisted method 460 // 14.3.4 Stabilisation methods 460 // 14.3.5 Biological methods 461 // 14.4 Application of SNPs 461 // 14.4.1 Metal uptake by SNPs 461 // 14.4.2 Antimicrobial applications of SNPs 466 // 14.4.3 Medical applications of SNPs 470 // References 471 // Chapter 15 // Treatment and reuse of solid materials containing inorganic sulfur compounds 477 // Richard Tichý, Pimluck Kijjanapanich and Piet N. L. Lens // 15.1 Inorganic Sulfur Transformations in Water/Solid // Phase Systems 477 // 15.1.1 Reductive processes 478 // 15.1.2 Oxidative processes 479 // 15.1.3 Chemical time bombs 482 // 15.2 Sulfur-Containing Materials of Environmental Concern 484 // 15.2.1 Reduced inorganic sulfur containing materials 485 // 15.2.2 Oxidized inorganic sulfur containing materials 488 // 15.3 Treatment Strategies for Sulfur Rich Solid Materials 489 // 15.3.1 Prevention of sulfur pollution 489 // 15.3.2 Elimination of sulfurous compounds from // solid materials 490 // 15.3.3 Suppression of the sulfur oxidation 492 //
15.4 Treatment Strategies for Sulfur Rich Soils 495 // 15.4.1 Treatment of acid sulfate soils 495 // 15.4.2 Treatment of gypsiferous soils 497 // 15.5 Treatment Strategies for Acid Mine Drainage 497 // 15.5.1 Chemical treatment processes 497 // 15.5.2 Biological acid mine drainage treatment 501 // References 504 // Index 515
(Au-PeEL)EBL6978139
(MiAaPQ)EBC6978139
(OCoLC)1232696345

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC