Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2022
1 online resource (775 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030926984 (electronic bk.)
ISBN 9783030926977
Tree Physiology Ser. ; v.8
Print version: Siegwolf, Rolf T. W. Stable Isotopes in Tree Rings Cham : Springer International Publishing AG,c2022 ISBN 9783030926977
3.4.4 Influence of Environment on Seasonal Dynamics of Wood Formation and Tree Phenology -- 3.5 Kinetics of Tracheid Differentiation in Relation with Tree Physiology.
2.5.3 Variance Changes in Composite Time-Series -- 2.6 Conclusions -- References -- 3 Anatomical, Developmental and Physiological Bases of Tree-Ring Formation in Relation to Environmental Factors -- 3.1 Introduction -- 3.2 Wood Structure and Functions -- 3.2.1 Xylem Anatomy -- 3.2.2 Xylem Cell Wall Structure and Composition -- 3.3 The Biological Basis of Wood Formation in Relation to Tree Development -- 3.3.1 The Successive Stages of Xylem Cell Differentiation -- 3.3.2 Heartwood Formation -- 3.3.3 Influence of Environmental Factors on Wood Formation Processes -- 3.4 Seasonal Dynamics of Wood Formation in Relation to Tree Phenology -- 3.4.1 The Phenology of Cambium and Xylem -- 3.4.2 The Phenology of Leaves, Roots and Reserves -- 3.4.3 Seasonal Dynamics of Wood Formation in Relation to Organ Phenology ---
3.4.4 Influence of Environment on Seasonal Dynamics of Wood Formation and Tree Phenology -- 3.5 Kinetics of Tracheid Differentiation in Relation with Tree Physiology.
Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Part I Introduction -- 1 Isotope Dendrochronology: Historical Perspective -- 1.1 Introduction -- 1.2 Origins -- 1.3 Advances -- 1.3.1 20th Century Spin Up -- 1.3.2 21st Century Expansion -- 1.4 Emerging Directions -- 1.5 Conclusions -- References -- 2 Dendrochronology: Fundamentals and Innovations -- 2.1 The Annual Ring-The Keeper of Time in Dendrochronology -- 2.1.1 Inter-Annual Variations in Tree-Rings and Tree-Ring Parameters -- 2.2 Crossdating -- 2.3 Sampling and Site Selection -- 2.4 Deconstructing Variability in Tree-Ring Data -- 2.4.1 The Linear Aggregate Model -- 2.4.2 Detrending and Standardization -- 2.4.3 Long-Term Trends in Tree-Ring Data -- 2.5 Chronology Development, Confidence, Sample Replication, Coherence, and Variance -- 2.5.1 Tree-Ring Chronologies -- 2.5.2 Assessment of Chronology Confidence ---
10.2 Oxygen Isotope Ratio of Source Water (e18Osw) -- 10.2.1 e18Osw and Climatic Signals -- 10.2.2 Isotopic Transfer from Precipitation to Source Water -- 10.3 Oxygen Isotope Enrichment of Leaf Water (E18Olw) -- 10.3.1 The Craig-Gordon Model and Humidity Effect -- 10.3.2 The Peclet Effect Model -- 10.4 Biochemical Fractionation -- 10.4.1 Oxygen Isotope Exchange at the Sites of Sucrose Production and Cellulose Synthesis -- 10.4.2 Oxygen Isotope Exchange During Phloem Loading and Transport of Sucrose -- 10.5 Conclusions -- References -- 11 The Stable Hydrogen Isotopic Signature: From Source Water to Tree Rings -- 11.1 General Introduction -- 11.2 The Hydrogen Isotopic Signature of Water in Trees -- 11.3 The Hydrogen Isotopic Signature of Tree-Ring Cellulose -- 11.4 Methods and Calculations for e2H Analysis of Tree Carbohydrates -- 11.4.1 Nitration Methods ---
12.4.3 Anthropogenic Impacts -- 12.4.4 Other Applications -- 12.5 Knowledge Gaps and Future Directions -- References -- 13 Postphotosynthetic Fractionation in Leaves, Phloem and Stem -- 13.1 Introduction -- 13.2 Post-Carboxylation Fractionation in the Leaves -- 13.3 Changes in e13C Related to Phloem Loading and Transport -- 13.4 The Hidden Stem Metabolism: Bark Photosynthesis, Stem Respiration, and the Role of Carbon Re-fixation -- 13.5 Imprint of Storage and Remobilization on the Intra-annual Variation in Tree Rings -- 13.6 Intra-molecular Isotope Distribution in Wood Tissues -- 13.7 Can We Actually Assess Water Use Efficiency from Tree-Ring e13C? -- References -- Part IV Physiological Interpretations -- 14 Limits and Strengths of Tree-Ring Stable Isotopes -- 14.1 Introduction -- 14.2 Environmental Constraints Impacting Tree Growth and Tree Species Distribution ---
4.4.3 Case Study: Pinus Ponderosa Growing in Southwestern US [Southern Arizona] -- 4.4.4 Preliminary Assessments -- 4.5 Conclusion -- References -- 5 Stable Isotope Signatures of Wood, its Constituents and Methods of Cellulose Extraction -- 5.1 Introduction -- 5.2 Whole Wood, Resin Extracted Wood, Lignin or Cellulose? -- 5.2.1 Basic Considerations from Chemical and Isotopic Properties of Wood Constituents -- 5.2.2 The Isotope Signatures of Wood as a Result of Relative Contributions of Its Individual Constituents -- 5.2.3 Estimating Potential Effects or Implications of Variable Proportions of Wood Constituents -- 5.2.4 Wood Versus Cellulose-A Review of Tree-Ring Stable Isotope Benchmarking Studies -- 5.2.5 Benefits of Using Cellulose Instead of Wood -- 5.2.6 The Additional Value of Stable Isotopes of Lignin Methoxyl Groups ---
7 Newer Developments in Tree-Ring Stable Isotope Methods -- 7.1 Introduction -- 7.2 Compound-Specific e13C and e18O Analysis of Sugars and Cyclitols -- 7.2.1 e13C Analysis of Tree Sugars and Cyclitols Using Liquid Chromatography -- 7.2.2 e18O Analysis of Tree Sugars and Cyclitols Using Gas Chromatography -- 7.3 UV-Laser Aided Sampling and Isotopic Analysis of Tree Rings -- 7.3.1 UV-Laser Microscopic Dissection (LMD) of Tree Rings -- 7.3.2 On-line Analysis of Tree-Ring e13C by Laser Ablation IRMS -- 7.3.3 Conversion of High Resolution Tree-Ring Isotope Data into a Temporal Scale -- 7.3.4 Research Applications -- 7.4 Position-Specific Isotope Analysis of Cellulose -- 7.4.1 Position-Specific e2H and e13C -- 7.4.2 Position-Specific e18O -- References -- Part III Isotopic Fractionations from Source to Wood ---
11.4.4 Calculation of Non-exchangeable Hydrogen Isotopic Composition, International Standards, and Referencing -- 11.5 Synthesis of e2HTRC Data, Applications, and Interpretations -- 11.5.1 Global e2HTRC Patterns and Hydro-Climatic Effects -- 11.5.2 Paleo-Climatic e2HTRC Applications -- 11.5.3 Local e2HTRC Pattern and Physio-Biochemical Effects -- 11.6 Conclusions -- References -- 12 Nitrogen Isotopes in Tree Rings-Challenges and Prospects -- 12.1 Introduction -- 12.2 Sample Preparation and Analytical Procedures -- 12.3 Assimilation, Storage and Fractionation of Nitrogen by Trees -- 12.3.1 Nitrogen through Foliage -- 12.3.2 From Soils through Roots to the Stems -- 12.3.3 N Remobilization, Inter-ring Translocation and Fractionation Within Stems -- 12.4 Tree-Ring e15N Responses to Changing Conditions -- 12.4.1 Physiological Changes -- 12.4.2 Regional and Global Climate ---
3.5.1 From Wood Formation Dynamics to the Kinetics of Tracheid Differentiation -- 3.5.2 Influence of Environmental Factors on the Kinetics of Wood Formation -- 3.6 How Wood Formation Monitoring Can Help to Better Understand Tree-Ring Isotopic Signal -- References -- Part II Methods -- 4 Sample Collection and Preparation for Annual and Intra-annual Tree-Ring Isotope Chronologies -- 4.1 Introduction -- 4.2 Sample Collection -- 4.2.1 Site and Tree Selection -- 4.2.2 Sample Replication -- 4.2.3 Choosing Field Sampling Equipment -- 4.3 Sample Preparation -- 4.3.1 Sampling Resolution -- 4.3.2 Sample Pooling -- 4.3.3 Particle Size Requirements for Chemical Extraction and Analytical Repeatability -- 4.4 Towards Subseasonal-Resolution Analyses of Tree-Ring Records -- 4.4.1 Important Considerations -- 4.4.2 Sampling Resolution Comparison ---
8.3 Notation and Measurement Units -- 8.3.1 Atom Fraction -- 8.3.2 Isotope Delta -- 8.3.3 Isotope phi -- 8.4 Properties of Isotopes -- 8.4.1 Isotope Effects-Physical Effects -- 8.4.2 Isotope Effects-Chemical Effects -- 8.5 Isotope Fractionation -- 8.5.1 Quantities to Express Isotope Fractionation -- 8.5.2 Example for Equilibrium Isotope Effects -- 8.5.3 Example for Kinetic Isotope Effects -- 8.5.4 Connection of EIE and KIE -- 8.6 Conclusion -- References -- 9 Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies -- 9.1 Introduction -- 9.2 The e13C of Atmospheric CO2 -- 9.3 Photosynthetic Discrimination Against 13C -- 9.4 Relating the e13C of Wood to Leaf Gas Exchange -- 9.5 Conclusions -- References -- 10 Environmental, Physiological and Biochemical Processes Determining the Oxygen Isotope Ratio of Tree-Ring Cellulose -- 10.1 Introduction ---
10.2 Oxygen Isotope Ratio of Source Water (e18Osw) -- 10.2.1 e18Osw and Climatic Signals -- 10.2.2 Isotopic Transfer from Precipitation to Source Water -- 10.3 Oxygen Isotope Enrichment of Leaf Water (E18Olw) -- 10.3.1 The Craig-Gordon Model and Humidity Effect -- 10.3.2 The Peclet Effect Model -- 10.4 Biochemical Fractionation -- 10.4.1 Oxygen Isotope Exchange at the Sites of Sucrose Production and Cellulose Synthesis -- 10.4.2 Oxygen Isotope Exchange During Phloem Loading and Transport of Sucrose -- 10.5 Conclusions -- References -- 11 The Stable Hydrogen Isotopic Signature: From Source Water to Tree Rings -- 11.1 General Introduction -- 11.2 The Hydrogen Isotopic Signature of Water in Trees -- 11.3 The Hydrogen Isotopic Signature of Tree-Ring Cellulose -- 11.4 Methods and Calculations for e2H Analysis of Tree Carbohydrates -- 11.4.1 Nitration Methods ---
11.4.2 Equilibration Methods -- 11.4.3 Position-Specific Methods to Determine e2HNE in Wood Material.
12.4.3 Anthropogenic Impacts -- 12.4.4 Other Applications -- 12.5 Knowledge Gaps and Future Directions -- References -- 13 Postphotosynthetic Fractionation in Leaves, Phloem and Stem -- 13.1 Introduction -- 13.2 Post-Carboxylation Fractionation in the Leaves -- 13.3 Changes in e13C Related to Phloem Loading and Transport -- 13.4 The Hidden Stem Metabolism: Bark Photosynthesis, Stem Respiration, and the Role of Carbon Re-fixation -- 13.5 Imprint of Storage and Remobilization on the Intra-annual Variation in Tree Rings -- 13.6 Intra-molecular Isotope Distribution in Wood Tissues -- 13.7 Can We Actually Assess Water Use Efficiency from Tree-Ring e13C? -- References -- Part IV Physiological Interpretations -- 14 Limits and Strengths of Tree-Ring Stable Isotopes -- 14.1 Introduction -- 14.2 Environmental Constraints Impacting Tree Growth and Tree Species Distribution ---
14.3 Climatic Factors Recorded in Tree-Ring Isotopes.
4.4.3 Case Study: Pinus Ponderosa Growing in Southwestern US [Southern Arizona] -- 4.4.4 Preliminary Assessments -- 4.5 Conclusion -- References -- 5 Stable Isotope Signatures of Wood, its Constituents and Methods of Cellulose Extraction -- 5.1 Introduction -- 5.2 Whole Wood, Resin Extracted Wood, Lignin or Cellulose? -- 5.2.1 Basic Considerations from Chemical and Isotopic Properties of Wood Constituents -- 5.2.2 The Isotope Signatures of Wood as a Result of Relative Contributions of Its Individual Constituents -- 5.2.3 Estimating Potential Effects or Implications of Variable Proportions of Wood Constituents -- 5.2.4 Wood Versus Cellulose-A Review of Tree-Ring Stable Isotope Benchmarking Studies -- 5.2.5 Benefits of Using Cellulose Instead of Wood -- 5.2.6 The Additional Value of Stable Isotopes of Lignin Methoxyl Groups ---
5.3 Cellulose Extraction Procedures, Reaction Devices and Sample Homogenization -- 5.3.1 Sample Pre-preparation, Wood Cross Sections and Tree-Ring Dissection -- 5.3.2 Extraction Chemistry.
7 Newer Developments in Tree-Ring Stable Isotope Methods -- 7.1 Introduction -- 7.2 Compound-Specific e13C and e18O Analysis of Sugars and Cyclitols -- 7.2.1 e13C Analysis of Tree Sugars and Cyclitols Using Liquid Chromatography -- 7.2.2 e18O Analysis of Tree Sugars and Cyclitols Using Gas Chromatography -- 7.3 UV-Laser Aided Sampling and Isotopic Analysis of Tree Rings -- 7.3.1 UV-Laser Microscopic Dissection (LMD) of Tree Rings -- 7.3.2 On-line Analysis of Tree-Ring e13C by Laser Ablation IRMS -- 7.3.3 Conversion of High Resolution Tree-Ring Isotope Data into a Temporal Scale -- 7.3.4 Research Applications -- 7.4 Position-Specific Isotope Analysis of Cellulose -- 7.4.1 Position-Specific e2H and e13C -- 7.4.2 Position-Specific e18O -- References -- Part III Isotopic Fractionations from Source to Wood ---
8 Isotopes-Terminology, Definitions and Properties -- 8.1 Introduction -- 8.2 Terminology -- 8.2.1 Isotopes -- 8.2.2 Isotopocule, Isotopologue and Isotopomer -- 8.2.3 Clumped Isotopes.
11.4.4 Calculation of Non-exchangeable Hydrogen Isotopic Composition, International Standards, and Referencing -- 11.5 Synthesis of e2HTRC Data, Applications, and Interpretations -- 11.5.1 Global e2HTRC Patterns and Hydro-Climatic Effects -- 11.5.2 Paleo-Climatic e2HTRC Applications -- 11.5.3 Local e2HTRC Pattern and Physio-Biochemical Effects -- 11.6 Conclusions -- References -- 12 Nitrogen Isotopes in Tree Rings-Challenges and Prospects -- 12.1 Introduction -- 12.2 Sample Preparation and Analytical Procedures -- 12.3 Assimilation, Storage and Fractionation of Nitrogen by Trees -- 12.3.1 Nitrogen through Foliage -- 12.3.2 From Soils through Roots to the Stems -- 12.3.3 N Remobilization, Inter-ring Translocation and Fractionation Within Stems -- 12.4 Tree-Ring e15N Responses to Changing Conditions -- 12.4.1 Physiological Changes -- 12.4.2 Regional and Global Climate ---
14.4 Climatic Controls of Plant Physiology as Reflected in Isotopic Signals.
3.5.1 From Wood Formation Dynamics to the Kinetics of Tracheid Differentiation -- 3.5.2 Influence of Environmental Factors on the Kinetics of Wood Formation -- 3.6 How Wood Formation Monitoring Can Help to Better Understand Tree-Ring Isotopic Signal -- References -- Part II Methods -- 4 Sample Collection and Preparation for Annual and Intra-annual Tree-Ring Isotope Chronologies -- 4.1 Introduction -- 4.2 Sample Collection -- 4.2.1 Site and Tree Selection -- 4.2.2 Sample Replication -- 4.2.3 Choosing Field Sampling Equipment -- 4.3 Sample Preparation -- 4.3.1 Sampling Resolution -- 4.3.2 Sample Pooling -- 4.3.3 Particle Size Requirements for Chemical Extraction and Analytical Repeatability -- 4.4 Towards Subseasonal-Resolution Analyses of Tree-Ring Records -- 4.4.1 Important Considerations -- 4.4.2 Sampling Resolution Comparison ---
5.3.3 Extraction Devices-Or How to Keep Order When Processing Large Numbers of Small Samples -- 5.3.4 Homogenization of Micro Amounts of Cellulose Samples -- 5.4 Concluding Remarks -- References -- 6 Tree-Ring Stable Isotope Measurements: The Role of Quality Assurance and Quality Control to Ensure High Quality Data -- 6.1 Introduction -- 6.1.1 What is QA/QC? -- 6.1.2 Taking Ownership of Your Data Quality -- 6.2 Measurements of Uncertainty -- 6.2.1 Identical Treatment Principle -- 6.2.2 Accuracy -- 6.2.3 Precision -- 6.2.4 Study Uncertainty and the Propagation of Error -- 6.3 IRMS Errors and Calibration -- 6.3.1 Random Measurement Error -- 6.3.2 Systematic Measurement Error -- 6.3.3 Calibration -- 6.4 Traceability and Standards -- 6.4.1 Traceability -- 6.4.2 Types of Isotopic Standards for Tree-Ring Analysis -- 6.5 Conclusions -- References ---
8.3 Notation and Measurement Units -- 8.3.1 Atom Fraction -- 8.3.2 Isotope Delta -- 8.3.3 Isotope phi -- 8.4 Properties of Isotopes -- 8.4.1 Isotope Effects-Physical Effects -- 8.4.2 Isotope Effects-Chemical Effects -- 8.5 Isotope Fractionation -- 8.5.1 Quantities to Express Isotope Fractionation -- 8.5.2 Example for Equilibrium Isotope Effects -- 8.5.3 Example for Kinetic Isotope Effects -- 8.5.4 Connection of EIE and KIE -- 8.6 Conclusion -- References -- 9 Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies -- 9.1 Introduction -- 9.2 The e13C of Atmospheric CO2 -- 9.3 Photosynthetic Discrimination Against 13C -- 9.4 Relating the e13C of Wood to Leaf Gas Exchange -- 9.5 Conclusions -- References -- 10 Environmental, Physiological and Biochemical Processes Determining the Oxygen Isotope Ratio of Tree-Ring Cellulose -- 10.1 Introduction ---
001897055
express
(Au-PeEL)EBL6978267
(MiAaPQ)EBC6978267
(OCoLC)1328134096

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC