Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2022
1 online resource (590 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783030948962 (electronic bk.)
ISBN 9783030948955
Topics in Applied Physics Ser. ; v.145
Print version: Slenczka, Alkwin Molecules in Superfluid Helium Nanodroplets Cham : Springer International Publishing AG,c2022 ISBN 9783030948955
4 Infrared Spectroscopy of Molecular Radicals and Carbenes in Helium Droplets.
2.1 Introduction -- 2.2 Experimental -- 2.2.1 Preparation of Small Helium Clusters -- 2.2.2 Coulomb Explosion Imaging -- 2.2.3 COLTRIMS -- 2.2.4 Structure Reconstruction from the Momentum Space -- 2.3 Helium Dimer -- 2.4 Helium Trimer -- 2.4.1 4He3: Ground State -- 2.4.2 4He3: Excited Efimov State -- 2.4.3 3He4He2 -- 2.5 Field-Induced Dynamics in the Helium Dimer -- 2.6 Conclusions -- References -- 3 Helium Droplet Mass Spectrometry -- 3.1 Foreword and Introduction -- 3.2 History of HND Mass Spectrometry -- 3.2.1 Pioneering Work by the Toennies Group (Gottingen) -- 3.2.2 Review of more recent research -- 3.2.3 Mass Spectrometry as a Complimentary Tool -- 3.3 Review of Recent Work by the Scheier Group (Innsbruck) -- 3.3.1 Classical HND MS Experiments -- 3.3.2 Multiply Charged Droplets -- 3.3.3 Pickup with Charged HNDs -- 3.4 Conclusion/Outlook -- References ---
Intro -- Preface -- Contents -- Contributors -- 1 Helium Nanodroplets: Formation, Physical Properties and Superfluidity -- 1.1 History -- 1.1.1 History of Superfluidity in Helium -- 1.1.2 History of Helium as a Cryomatrix for Spectroscopy -- 1.2 Thermodynamic Properties of Helium -- 1.3 Formation and Characterization of Helium Nanodroplets -- 1.3.1 Production of Nanodroplets in Free Jet Expansions -- 1.3.2 The 4 Regimes of Isentropic Expansions -- 1.3.3 Droplet Sizes and Size Distributions in Regimes I, II, III, and IV -- 1.3.4 Velocities of Nanodroplets -- 1.4 Physical Properties of Nanodroplets -- 1.4.1 Total Energies -- 1.4.2 Excited State Energies -- 1.4.3 Radial Distributions -- 1.4.4 Internal Temperatures of Nanodroplets -- 1.5 Evidence for Superfluidity in Finite-Sized Helium Nanodroplets -- References -- 2 Small Helium Clusters Studied by Coulomb Explosion Imaging ---
5.4.2 Van Der Waals Clusters of Anthracene with Argon Atoms -- 5.4.3 Van Der Waals Clusters of Phthalocyanine with Argon Atoms -- 5.4.4 Summary -- 5.5 Elementary Chemical Reactions in Helium Droplets -- 5.5.1 Bimolecular Reaction of Barium with Nitrous Oxide -- 5.5.2 Photolysis of Iodomethane and Perfluorated Iodomethane in Helium Droplets -- 5.5.3 Excited State Intramolecular Proton Transfer (ESIPT) in Superfluid Helium Droplets -- 5.5.4 Summary -- 5.6 Concluding Remarks on Electronic Spectroscopy of Molecules in Superfluid Helium Droplets -- References -- 6 Spectroscopy of Small and Large Biomolecular Ions in Helium-Nanodroplets -- 6.1 Introduction -- 6.1.1 Infrared Spectroscopy -- 6.1.2 Action Spectroscopy -- 6.1.3 IR Multiple Photon Dissociation (IRMPD) Action Spectroscopy -- 6.1.4 Action Spectroscopy Using Helium Nanodroplets -- 6.2 Experiments on Ions in Helium Nanodroplets ---
7.4 Imaging Pure Helium Droplets -- 7.4.1 Shapes of Pure Helium Droplets -- 7.4.2 Droplet Stability Curve -- 7.4.3 Non-superfluid Helium Droplets -- 7.5 Imaging Dopant Cluster Structures in a Superfluid Helium Droplet -- 7.5.1 Vortex Structures in Superfluid Helium Droplets -- 7.5.2 Vortex Lattices and Angular Momentum Determination -- 7.5.3 Controlling Structures Formed in Helium Droplets -- 7.6 Imaging Dynamical Processes in Helium Droplets -- 7.7 Summary and Outlook -- References -- 8 Electron Diffraction of Molecules and Clusters in Superfluid Helium Droplets -- 8.1 Introduction -- 8.2 Theory -- 8.2.1 Theoretical Concept of Gas-Phase Electron Diffraction -- 8.2.2 Implementation and Challenges -- 8.3 Experiment -- 8.4 Characterization of Droplet Sizes -- 8.5 Image and Data Processing -- 8.6 Case Study -- 8.6.1 Electron Diffraction of Pure Droplets at Different Temperatures ---
10.4.1 Vibrational Wavepackets in Alkali Dimers and Trimers -- 10.4.2 Vibrational Wave Packets in Solvated Dimers -- 10.5 Dynamics of Highly Excited Helium Droplets -- 10.5.1 Time-Resolved XUV Spectroscopy of Pure He Nanodroplets -- 10.5.2 Interatomic Coulombic Decay Processes in Doped Helium Nanodroplets -- 10.5.3 Dynamics of Helium Nanoplasmas -- 10.6 Coherent Multidimensional Spectroscopy in Helium Nanodroplets -- 10.6.1 Spectroscopic Concepts of Wave Packet Interferometry and Coherent Multidimensional Spectroscopy -- 10.6.2 Resolving the Experimental Challenges -- 10.6.3 High Resolution Wave Packet Interferometry -- 10.6.4 Ultrafast Droplet-Induced Coherence Decay in Alkali Dopants -- 10.6.5 Coherent Multidimensional Spectroscopy of Doped Helium Nanodroplets -- 10.7 Conclusions and Outlook -- References -- 11 Synthesis of Metallic Nanoparticles in Helium Droplets -- 11.1 Introduction -- 11.2 Nanoparticle Synthesis with Helium Droplets -- 11.2.1 Doping of Helium Nanodroplets -- 11.2.2 Aggregation of Nanoparticles -- 11.2.3 Nanoparticle Growth -- 11.2.4 Core@shell Nanoparticles -- 11.2.5 Deposition of Nanoparticles -- 11.2.6 Size and Shape of Nanoparticles Synthesized with Helium Droplets -- 11.3 Metal Nanoparticles -- 11.3.1 Thermal Stability of Metal Particles and Nanoscale Alloying Processes -- 11.3.2 Plasmonic Metals in Helium Droplets -- 11.3.3 Metal Nanoparticles and Molecules -- 11.3.4 Beyond Two-Component Core@shell Nanoparticles -- 11.4 Metal Oxide Nanoparticles -- 11.4.1 Determination of Oxidation States -- 11.4.2 Oxidation Experiments with Deposited Metal Nanoparticles -- 11.4.3 Metal Core-Transition Metal Oxide Shell Nanoparticles -- 11.5 Outlook -- References -- Appendix Helium Cluster and Droplet Spectroscopy Reviews -- Index.
6.2.2 The FHI Free-Electron Laser -- 6.2.3 IR Excitation of Ions in Helium Droplets -- 6.3 Spectroscopy of Ions in Helium Droplets: Results on Small Anionic Complexes and Carbohydrates -- 6.3.1 Fluoride-CO2-H2O Chemistry -- 6.3.2 Carbohydrates -- 6.3.3 Mono- and Disaccharides -- 6.3.4 Trisaccharides -- 6.3.5 Naturally Occurring Tetrasaccharides -- 6.4 Conclusions -- References -- 7 X-Ray and XUV Imaging of Helium Nanodroplets -- 7.1 Introduction -- 7.2 Imaging -- 7.2.1 Lens-Based and Lensless Imaging -- 7.2.2 Coherent Light Sources -- 7.2.3 Coherent Diffractive Imaging -- 7.2.4 Small-Angle and Wide-Angle Scattering -- 7.3 Coherent Diffractive Imaging with Helium Droplets -- 7.3.1 Experimental Setup for X-Ray and XUV Imaging -- 7.3.2 Diffraction Imaging of Helium Nanodroplets -- 7.3.3 Dopant Clusters Image Reconstruction -- 7.3.4 Forward Simulation and Machine Learning ---
5.4.2 Van Der Waals Clusters of Anthracene with Argon Atoms -- 5.4.3 Van Der Waals Clusters of Phthalocyanine with Argon Atoms -- 5.4.4 Summary -- 5.5 Elementary Chemical Reactions in Helium Droplets -- 5.5.1 Bimolecular Reaction of Barium with Nitrous Oxide -- 5.5.2 Photolysis of Iodomethane and Perfluorated Iodomethane in Helium Droplets -- 5.5.3 Excited State Intramolecular Proton Transfer (ESIPT) in Superfluid Helium Droplets -- 5.5.4 Summary -- 5.6 Concluding Remarks on Electronic Spectroscopy of Molecules in Superfluid Helium Droplets -- References -- 6 Spectroscopy of Small and Large Biomolecular Ions in Helium-Nanodroplets -- 6.1 Introduction -- 6.1.1 Infrared Spectroscopy -- 6.1.2 Action Spectroscopy -- 6.1.3 IR Multiple Photon Dissociation (IRMPD) Action Spectroscopy -- 6.1.4 Action Spectroscopy Using Helium Nanodroplets -- 6.2 Experiments on Ions in Helium Nanodroplets ---
6.2.1 Pickup of Mass-to-Charge Selected Ions in Helium Droplets.
7.4 Imaging Pure Helium Droplets -- 7.4.1 Shapes of Pure Helium Droplets -- 7.4.2 Droplet Stability Curve -- 7.4.3 Non-superfluid Helium Droplets -- 7.5 Imaging Dopant Cluster Structures in a Superfluid Helium Droplet -- 7.5.1 Vortex Structures in Superfluid Helium Droplets -- 7.5.2 Vortex Lattices and Angular Momentum Determination -- 7.5.3 Controlling Structures Formed in Helium Droplets -- 7.6 Imaging Dynamical Processes in Helium Droplets -- 7.7 Summary and Outlook -- References -- 8 Electron Diffraction of Molecules and Clusters in Superfluid Helium Droplets -- 8.1 Introduction -- 8.2 Theory -- 8.2.1 Theoretical Concept of Gas-Phase Electron Diffraction -- 8.2.2 Implementation and Challenges -- 8.3 Experiment -- 8.4 Characterization of Droplet Sizes -- 8.5 Image and Data Processing -- 8.6 Case Study -- 8.6.1 Electron Diffraction of Pure Droplets at Different Temperatures ---
8.6.2 Single Dopant Case: Ferrocene -- 8.6.3 Small Cluster of the Simple Molecules: CBr4.
10.4.1 Vibrational Wavepackets in Alkali Dimers and Trimers -- 10.4.2 Vibrational Wave Packets in Solvated Dimers -- 10.5 Dynamics of Highly Excited Helium Droplets -- 10.5.1 Time-Resolved XUV Spectroscopy of Pure He Nanodroplets -- 10.5.2 Interatomic Coulombic Decay Processes in Doped Helium Nanodroplets -- 10.5.3 Dynamics of Helium Nanoplasmas -- 10.6 Coherent Multidimensional Spectroscopy in Helium Nanodroplets -- 10.6.1 Spectroscopic Concepts of Wave Packet Interferometry and Coherent Multidimensional Spectroscopy -- 10.6.2 Resolving the Experimental Challenges -- 10.6.3 High Resolution Wave Packet Interferometry -- 10.6.4 Ultrafast Droplet-Induced Coherence Decay in Alkali Dopants -- 10.6.5 Coherent Multidimensional Spectroscopy of Doped Helium Nanodroplets -- 10.7 Conclusions and Outlook -- References -- 11 Synthesis of Metallic Nanoparticles in Helium Droplets -- 11.1 Introduction -- 11.2 Nanoparticle Synthesis with Helium Droplets -- 11.2.1 Doping of Helium Nanodroplets -- 11.2.2 Aggregation of Nanoparticles -- 11.2.3 Nanoparticle Growth -- 11.2.4 Core@shell Nanoparticles -- 11.2.5 Deposition of Nanoparticles -- 11.2.6 Size and Shape of Nanoparticles Synthesized with Helium Droplets -- 11.3 Metal Nanoparticles -- 11.3.1 Thermal Stability of Metal Particles and Nanoscale Alloying Processes -- 11.3.2 Plasmonic Metals in Helium Droplets -- 11.3.3 Metal Nanoparticles and Molecules -- 11.3.4 Beyond Two-Component Core@shell Nanoparticles -- 11.4 Metal Oxide Nanoparticles -- 11.4.1 Determination of Oxidation States -- 11.4.2 Oxidation Experiments with Deposited Metal Nanoparticles -- 11.4.3 Metal Core-Transition Metal Oxide Shell Nanoparticles -- 11.5 Outlook -- References -- Appendix Helium Cluster and Droplet Spectroscopy Reviews -- Index.
4.1 Infrared Spectroscopy of Molecular Radicals and Carbenes in Helium Droplets -- 4.1.1 Experimental Methods -- 4.1.2 Infrared Spectroscopy of Hydrocarbon Radicals -- 4.1.3 Rcdot + (3Vg-)O2 Chemistry in Helium Droplets -- 4.1.4 Infrared Spectroscopy of Hydroxycarbenes -- References -- 5 Electronic Spectroscopy in Superfluid Helium Droplets -- 5.1 Introduction -- 5.2 Electronic Spectroscopy -- 5.3 Electronic Spectra of Molecules in Helium Droplets -- 5.3.1 Glyoxal in Superfluid Helium Droplets -- 5.3.2 Tetracene in Superfluid Helium Droplets -- 5.3.3 Phthalocyanine in Superfluid Helium Droplets -- 5.3.4 Porphin in Superfluid Helium Droplets -- 5.3.5 Summary -- 5.3.6 Low Energy Torsional and Bending Modes in Electronic Spectra of Molecules in Helium Droplets -- 5.4 Van Der Waals Clusters Generated in Helium Droplets -- 5.4.1 Van Der Waals Clusters of Tetracene with Argon Atoms ---
6.2.2 The FHI Free-Electron Laser -- 6.2.3 IR Excitation of Ions in Helium Droplets -- 6.3 Spectroscopy of Ions in Helium Droplets: Results on Small Anionic Complexes and Carbohydrates -- 6.3.1 Fluoride-CO2-H2O Chemistry -- 6.3.2 Carbohydrates -- 6.3.3 Mono- and Disaccharides -- 6.3.4 Trisaccharides -- 6.3.5 Naturally Occurring Tetrasaccharides -- 6.4 Conclusions -- References -- 7 X-Ray and XUV Imaging of Helium Nanodroplets -- 7.1 Introduction -- 7.2 Imaging -- 7.2.1 Lens-Based and Lensless Imaging -- 7.2.2 Coherent Light Sources -- 7.2.3 Coherent Diffractive Imaging -- 7.2.4 Small-Angle and Wide-Angle Scattering -- 7.3 Coherent Diffractive Imaging with Helium Droplets -- 7.3.1 Experimental Setup for X-Ray and XUV Imaging -- 7.3.2 Diffraction Imaging of Helium Nanodroplets -- 7.3.3 Dopant Clusters Image Reconstruction -- 7.3.4 Forward Simulation and Machine Learning ---
8.6.4 Halogen Bond Case in the Case of I2 -- 8.6.5 CS2 -- 8.6.6 Diffraction of Molecules Only with Light Atoms: Pyrene -- 8.7 Conclusion -- References -- 9 Laser-Induced Alignment of Molecules in Helium Nanodroplets -- 9.1 Introduction -- 9.2 Alignment of Isolated Molecules -- 9.2.1 Laser-Induced Alignment: Basics -- 9.2.2 Nonadiabatic and Adiabatic Alignment: OCS Example -- 9.2.3 Experimental Setup -- 9.2.4 Experimental Observations of Adiabatic Alignment -- 9.2.5 Experimental Observations of Nonadiabatic Alignment -- 9.2.6 Laser-Induced Alignment: A Versatile and Useful Technique -- 9.3 Alignment of Molecules in Helium Nanodroplets -- 9.3.1 Alignment of Molecules in a Dissipative Environment? -- 9.3.2 Alignment of Molecules in He Droplets: First Experiments -- 9.3.3 Nonadiabatic Alignment in the Weak-Field Limit: Free Rotation (Reconciling the Time and the Frequency Domains) -- 9.3.4 Nonadiabatic Alignment in the Strong-Field Limit: Breaking Free -- 9.3.5 Adiabatic Alignment of Molecules in He Nanodroplets -- 9.3.6 Long-Lasting Field-Free Alignment of Molecules -- 9.3.7 Structure Determination of Dimers in He Nanodroplets -- 9.4 Conclusion -- References -- 10 Ultrafast Dynamics in Helium Droplets -- 10.1 Introduction -- 10.2 Time-Resolved Techniques Applied to Helium Nanodroplets -- 10.2.1 Time-Resolved Photon Detection -- 10.2.2 Pump-Probe Fluorescence Detection -- 10.2.3 Time-Resolved Spectroscopy by Photoion Detection -- 10.2.4 Time-Resolved Photoelectron Spectroscopy -- 10.2.5 Time-Resolved Correlation Spectroscopy -- 10.2.6 Time-Dependent Density-Functional Theory Simulations -- 10.3 Dynamics of Atomic Dopants -- 10.3.1 Surface-Located Atoms -- 10.3.2 Solvated Atoms-Solvation Dynamics -- 10.3.3 Dynamics of Superfluid Droplets Compared to Normalfluid 3He Droplets -- 10.4 Vibrational Dynamics of Molecular Dopants.
001897145
express
(Au-PeEL)EBL7001398
(MiAaPQ)EBC7001398
(OCoLC)1322485781

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC