Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
Cham : Springer International Publishing AG, 2022
1 online resource (347 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9783031058639 (electronic bk.)
ISBN 9783031058622
Springer Tracts in Additive Manufacturing Ser.
Print version: Godec, Damir A Guide to Additive Manufacturing Cham : Springer International Publishing AG,c2022 ISBN 9783031058622
Intro -- Acknowledgement -- Introduction -- Contents -- List of Figures -- List of Tables -- 1 Introduction to Additive Manufacturing -- 1.1 What is Additive Manufacturing -- 1.2 Why Do We Need Additive Manufacturing -- 1.3 Additive Manufacturing Classification -- 1.4 Vat Photopolymerization-VPP -- 1.4.1 Stereolithography-VPP-UVL/P (SLA) -- 1.4.2 Vat Photopolymerisation Digital Light Processing-VPP-UVM/P (DLP) -- 1.5 Material Jetting (MJT) -- 1.5.1 PolyJet -- 1.6 Binder Jetting (BJT) -- 1.6.1 3D Printing 3DP -- 1.7 Powder Bed Fusion Technologies (PBF) -- 1.7.1 Introduction to Powder Bed Fusion Technologies -- 1.7.2 Electron Beam Technology (PBF-EB/M) -- 1.7.3 Laser Melting (PBF-LB/M) Technology -- 1.7.4 Selective Laser Sintering (PBF-LB/P) Technology -- 1.7.5 HP Multi Jet Fusion (PBF-IrL/P) Technology -- 1.7.6 Metal Binder Jetting (MBJT) Technology -- 1.8 Material Extrusion Additive Manufacturing (MEX) Technologies -- 1.8.1 Material Extrusion with Plungers -- 1.8.2 Material Extrusion with Filaments -- 1.8.3 Material Extrusion with Screws -- 1.8.4 Disadvantages of Using MEX -- References -- 2 General Process Workflow in Additive Manufacturing -- 2.1 Pre-processing for Additive Manufacturing -- 2.1.1 File Formats Used in Additive Manufacturing -- 2.1.2 Part Placement in Machine Envelope, Slicing and Machine Setup -- 2.2 Build and Post-processing -- References -- 3 Standardisation in AM -- 3.1 Introduction to Standards -- 3.1.1 Significance of Standards -- 3.1.2 Standardisation Bodies -- 3.2 AM Standards -- 3.2.1 Structure of AM Standards -- 3.2.2 ASTM International/ASTM F42 -- 3.2.3 CEN/TC 438 -- 3.2.4 ISO/TC 261 -- 3.3 Reading, Writing and Retrieving Standards -- 3.3.1 Reading Standards -- 3.3.2 Writing Standards -- 3.4 Conclusion -- 3.5 External Resources -- References -- 4 Design for AM -- 4.1 The General Thought Process of DfAM.
7.1.3 High Pressure Capillary Rheometry of Polymeric Materials for MEX -- 7.1.4 Rotational Rheometry of Polymeric Materials for MEX -- 7.1.5 Thermal Conductivity of Polymeric Materials for MEX -- 7.1.6 Filament Production for MEX -- 7.2 Development of Materials for PBF Technologies -- 7.2.1 Metallic Materials -- 7.2.2 Powder Manufacture and Metal Powders for Additive Manufacturing (AM) -- 7.2.3 Tests for AM Powder Characterization -- 7.2.4 Processing Parameters Determination for PBF-EB/M -- 7.2.5 Qualification of the PBF-EB/M Production -- 7.2.6 Powder Recycling for PBF-EB/M -- 7.2.7 Parts Characterizing and Qualification -- 7.3 Development of Materials for PBF-LB/P -- 7.3.1 Processing Parameters Determination for PBF-LB/P -- 7.3.2 Qualification of the PBF-LB/P Production -- 7.3.3 Powder Blending and Recycling for PBF-LB/P -- References ---
4.2 The Economics of DfAM -- 4.2.1 Machine Costs -- 4.2.2 Material Costs -- 4.2.3 Post-processing Costs -- 4.2.4 Time Factors That Are Affected by Design -- 4.2.5 Economics Case Study: Metal AM Manufactured Hydraulic Manifold -- 4.3 Polymer Design Guidelines -- 4.3.1 Designing for Material Extrusion (MEX) -- 4.3.2 Designing for Polymer Powder Bed Fusion (PBF-LB/P) -- 4.3.3 Designing for Vat Photopolymerisation (VPP) -- 4.4 Metal Design Guidelines -- 4.4.1 General Design for Metal PBF -- 4.4.2 Design for Laser Powder Bed Fusion (PBF-LB/M) -- 4.4.3 Design for PBF-EB/M Guidelines -- References -- 5 General Process Simulations -- 5.1 Simulation -- 5.1.1 Geometry Definition -- 5.1.2 Discretization -- 5.1.3 Material Properties -- 5.1.4 Boundary Conditions -- 5.1.5 Post-processing Results -- 5.2 AM Build Process Simulation -- 5.2.1 Geometry Definition -- 5.2.2 Discretization -- 5.2.3 Material Definition -- 5.2.4 Build-Process Parameters -- 5.2.5 Post-processing -- 5.2.6 Limitations -- 5.3 Optimization -- 5.3.1 Topology Optimization -- 5.3.2 Define Design Space -- 5.3.3 Define Non-design Space -- 5.3.4 Define Boundary Conditions -- 5.3.5 Define Constraints and Objectives -- 5.3.6 Define Optimization Settings -- 5.3.7 Solve -- 5.3.8 Interpret the Results -- 5.3.9 Validate -- 5.3.10 Topologic Design with Altair Software -- 5.3.11 Topologic Design with Altair Software for PBF-EB/M -- 5.3.12 Topologic Design with Altair Software for PBF-LB/P (SLS) -- 5.4 Lattice-Based Topology Optimization -- 5.4.1 Lattice Type -- 5.4.2 Define the Cell Size -- 5.4.3 Define the Shell Thickness -- 5.4.4 Define the Minimum/Maximum Density -- 5.4.5 Interpret the Results -- 5.4.6 Validate -- 5.5 Non-parametric Mesh Modelling -- References -- 6 Applications of AM -- 6.1 AM in Tool Making Application -- 6.1.1 AM Silicone Short-Run Moulds -- 6.1.2 AM PolyJet Bridge Moulds.
8.1.3 Manufacturing Methods for FGM -- 8.2 Functionally Graded Additive Manufacturing (FGAM) -- 8.2.1 The FGAM Process Chain -- 8.2.2 Design and Modelling of FGAM Parts -- 8.2.3 FGAM Technologies -- 8.2.4 FGAM Applications -- 8.3 Conclusion -- References -- Correction to: General Process Simulations -- Correction to: Chapter 5 in: D. Godec et al. (eds.), A Guide to Additive Manufacturing, Springer Tracts in Additive Manufacturing, https://doi.org/10.1007/978-3-031-05863-9_5 -- Conclusion -- Appendix A-List of AM Standards -- Conclusion -- Appendix A-List of AM Standards.
7.1.3 High Pressure Capillary Rheometry of Polymeric Materials for MEX -- 7.1.4 Rotational Rheometry of Polymeric Materials for MEX -- 7.1.5 Thermal Conductivity of Polymeric Materials for MEX -- 7.1.6 Filament Production for MEX -- 7.2 Development of Materials for PBF Technologies -- 7.2.1 Metallic Materials -- 7.2.2 Powder Manufacture and Metal Powders for Additive Manufacturing (AM) -- 7.2.3 Tests for AM Powder Characterization -- 7.2.4 Processing Parameters Determination for PBF-EB/M -- 7.2.5 Qualification of the PBF-EB/M Production -- 7.2.6 Powder Recycling for PBF-EB/M -- 7.2.7 Parts Characterizing and Qualification -- 7.3 Development of Materials for PBF-LB/P -- 7.3.1 Processing Parameters Determination for PBF-LB/P -- 7.3.2 Qualification of the PBF-LB/P Production -- 7.3.3 Powder Blending and Recycling for PBF-LB/P -- References ---
8 Development of FGM and FGAM -- 8.1 Functionally Graded Material (FGM) -- 8.1.1 Benefits of FGM -- 8.1.2 Classifications of FGM.
4.2 The Economics of DfAM -- 4.2.1 Machine Costs -- 4.2.2 Material Costs -- 4.2.3 Post-processing Costs -- 4.2.4 Time Factors That Are Affected by Design -- 4.2.5 Economics Case Study: Metal AM Manufactured Hydraulic Manifold -- 4.3 Polymer Design Guidelines -- 4.3.1 Designing for Material Extrusion (MEX) -- 4.3.2 Designing for Polymer Powder Bed Fusion (PBF-LB/P) -- 4.3.3 Designing for Vat Photopolymerisation (VPP) -- 4.4 Metal Design Guidelines -- 4.4.1 General Design for Metal PBF -- 4.4.2 Design for Laser Powder Bed Fusion (PBF-LB/M) -- 4.4.3 Design for PBF-EB/M Guidelines -- References -- 5 General Process Simulations -- 5.1 Simulation -- 5.1.1 Geometry Definition -- 5.1.2 Discretization -- 5.1.3 Material Properties -- 5.1.4 Boundary Conditions -- 5.1.5 Post-processing Results -- 5.2 AM Build Process Simulation -- 5.2.1 Geometry Definition -- 5.2.2 Discretization -- 5.2.3 Material Definition -- 5.2.4 Build-Process Parameters -- 5.2.5 Post-processing -- 5.2.6 Limitations -- 5.3 Optimization -- 5.3.1 Topology Optimization -- 5.3.2 Define Design Space -- 5.3.3 Define Non-design Space -- 5.3.4 Define Boundary Conditions -- 5.3.5 Define Constraints and Objectives -- 5.3.6 Define Optimization Settings -- 5.3.7 Solve -- 5.3.8 Interpret the Results -- 5.3.9 Validate -- 5.3.10 Topologic Design with Altair Software -- 5.3.11 Topologic Design with Altair Software for PBF-EB/M -- 5.3.12 Topologic Design with Altair Software for PBF-LB/P (SLS) -- 5.4 Lattice-Based Topology Optimization -- 5.4.1 Lattice Type -- 5.4.2 Define the Cell Size -- 5.4.3 Define the Shell Thickness -- 5.4.4 Define the Minimum/Maximum Density -- 5.4.5 Interpret the Results -- 5.4.6 Validate -- 5.5 Non-parametric Mesh Modelling -- References -- 6 Applications of AM -- 6.1 AM in Tool Making Application -- 6.1.1 AM Silicone Short-Run Moulds -- 6.1.2 AM PolyJet Bridge Moulds.
6.2 Design Rules for Bridge PolyJet Moulds -- 6.2.1 AM (Steel) Hard Moulds -- 6.2.2 Efficient AM Moulds-Conformal Cooling -- 6.2.3 Efficient AM Moulds-Optimised Build Time in Tooling -- 6.3 AM Application in Medicine -- 6.3.1 Medical Research and Development -- 6.3.2 Preclinical Testing and Planning -- 6.3.3 Production of Medical Devices -- 6.3.4 AM Pharmaceutical Application -- 6.3.5 AM for Bioprinting/Tissue Fabrication -- 6.4 AM Applications in the Transport Industry -- 6.4.1 Aerospace Industry -- 6.4.2 Railway Industry -- 6.4.3 Maritime Transport Industry -- 6.4.4 Automotive Industry -- References -- 7 Development of Material and Processing Parameters for AM -- 7.1 Development of Materials for Material Extrusion (MEX) -- 7.1.1 Compounding of Special Materials for Material Extrusion AM -- 7.1.2 Differential Scanning Calorimetry of Polymeric Materials for MEX ---
8.1.3 Manufacturing Methods for FGM -- 8.2 Functionally Graded Additive Manufacturing (FGAM) -- 8.2.1 The FGAM Process Chain -- 8.2.2 Design and Modelling of FGAM Parts -- 8.2.3 FGAM Technologies -- 8.2.4 FGAM Applications -- 8.3 Conclusion -- References -- Correction to: General Process Simulations -- Correction to: Chapter 5 in: D. Godec et al. (eds.), A Guide to Additive Manufacturing, Springer Tracts in Additive Manufacturing, https://doi.org/10.1007/978-3-031-05863-9_5 -- Conclusion -- Appendix A-List of AM Standards -- Conclusion -- Appendix A-List of AM Standards.
001898031
express
(Au-PeEL)EBL7084580
(MiAaPQ)EBC7084580
(OCoLC)1345467063

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC