Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
Norwood : Artech House, 2021
1 online resource (373 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781630818692 (electronic bk.)
ISBN 9781630818685
Print version: Ladbrooke, Peter H. Nonlinear Design Norwood : Artech House,c2021 ISBN 9781630818685
Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel.
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay xgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay x -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.
2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker’s Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required.
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay xgm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay x -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index.
2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 x: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements.
6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of x -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(x) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating x.
001905479
express
(Au-PeEL)EBL6877367
(MiAaPQ)EBC6877367
(OCoLC)1296425002

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC