Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
Norwood : Artech House, 2018
1 online resource (315 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781630814892 (electronic bk.)
ISBN 9781630814885
Print version: Sturdivant, Rick Systems Engineering of Phased Arrays Norwood : Artech House,c2018 ISBN 9781630814885
2.5 Array Beamforming Options -- 2.6 Polarization Diverse and Wideband Arrays -- 2.7 Conclusions -- 2.8 Problems -- References -- 3 Use Cases for Phased Arrays.
1.6.7 Digital Receiver/Exciter Development -- 1.6.8 Mechanical Structure Development -- 1.6.9 Production Plan Development -- 1.6.10 Acceptance Testing -- 1.6.11 Other Functions -- 1.6.12 Outputs from Engineering Development -- 1.7 Phase III: Post-Development -- 1.7.1 Production -- 1.7.2 Deployment -- 1.7.3 Operation and System Maintenance -- 1.7.4 Eventual Decommissioning -- 1.8 Conclusions -- 1.9 Problems -- References -- 2 Phased Array System Architectures -- 2.1 Introduction to Phased Array System Architectures -- 2.2 Phased Array System Basics -- 2.3 Phased Array Architectures -- 2.3.1 Passive Phased Arrays -- 2.3.2 AESA -- 2.3.3 AESA with Phase Shifters at Each Element and at Each Subarray -- 2.3.4 Element-Level Digital Beamforming -- 2.3.5 Other Methods -- 2.4 Array Architectures for T/R Module Integration ---
2.5 Array Beamforming Options -- 2.6 Polarization Diverse and Wideband Arrays -- 2.7 Conclusions -- 2.8 Problems -- References -- 3 Use Cases for Phased Arrays.
Intro -- Systems Engineering of Phased Arrays -- Contents -- Preface -- Acknowledgments -- Part I System Engineering Activities -- 1 The Systems Engineering Process and Its Application to Phased Arrays -- 1.1 Introduction -- 1.2 Methodological Reductionism -- 1.3 The Systems Engineering Approach -- 1.4 The Three-Phase Process -- 1.5 Phase 1: Concept Development -- 1.5.1 Needs Analysis -- 1.5.2 Alternatives Exploration -- 1.5.3 Trade Studies and Baseline Selection -- 1.5.4 New Technology Validation -- 1.5.5 Risk Management Plan -- 1.5.6 Other Concept Development Activities -- 1.6 Phase II: Engineering Development -- 1.6.1 Typical Engineering Activities for Phased Arrays -- 1.6.2 Antenna Development -- 1.6.3 Integrated Circuit Development -- 1.6.4 T/R Module Development -- 1.6.5 Thermal Design and Heat Transfer Development -- 1.6.6 Beamformer Development ---
11.4 Types of Advanced Development Risk Reduction Activities -- 11.5 Typical Risks in Phased Array Development -- 11.6 Advanced Development Impacts All Levels of the System -- 11.7 Other Risk Analysis Topics.
5.2 Based Concepts of Antennas -- 5.3 Antenna Development Process -- 5.4 Conventional Dipole -- 5.5 Planar Inverted-F Antenna -- 5.6 Meander Line Antenna.
7.5.2 Brick Array Cooling -- 7.5.3 Tile Array Cooling -- 7.6 Other Reliability Drivers for Phased Arrays -- 7.7 Materials Used for Thermal Management -- 7.8 Conclusions -- 7.9 Problems -- References -- 8 Analog versus Digital Beamforming -- 8.1 Introduction.
11.8 Conclusions -- 11.9 Problems -- References -- 12 Conclusions -- About the Authors -- Index.
5.7 Microstrip Patch Antennas -- 5.8 Bowtie Dipole Antenna -- 5.9 Waveguide Radiators -- 5.10 Reflector Antenna -- 5.11 Vivaldi Tapered Slotline Antenna -- 5.12 Low-Profile Vivaldi Tapered Slot Antennas -- 5.13 Tightly Coupled Dipole Array -- 5.14 Conclusions -- 5.15 Problems -- References -- 6 Transmit/Receive Modules -- 6.1 Introduction -- 6.2 Technical Challenges Often Faced in T/R Module Development -- 6.2.1 Heat Transfer -- 6.2.2 Signal Integrity -- 6.2.3 Integration with Other Functions -- 6.2.4 Materials Compatibility -- 6.2.5 Electromagnetic Coupling -- 6.3 General Description of the T/R Module -- 6.3.1 System Location of the T/R Module -- 6.3.2 T/R Block Diagram -- 6.4 T/R Module Detailed Description -- 6.4.1 Low Noise Amplifier -- 6.4.2 Low Noise Amplifier Protection ---
11.4 Types of Advanced Development Risk Reduction Activities -- 11.5 Typical Risks in Phased Array Development -- 11.6 Advanced Development Impacts All Levels of the System -- 11.7 Other Risk Analysis Topics.
3.6 Conclusions -- 3.7 Problems -- References -- 4 Phased Array Concept Development Example -- 4.1 Introduction -- 4.2 Needs Assessment-A Common Starting Point -- 4.3 Technology Opportunities -- 4.4 System Architecting -- 4.5 The SAI Method for New System Concept Development -- 4.6 Application of the Modified SAI Method to Broadband Access for Small to Medium-Size Public Venues -- 4.6.1 Step 1: Determine Value Proposition and Constraints -- 4.6.2 Step 2: Identification of Potential Perturbations -- 4.6.3 Step 3: Identify Desired Ilities -- 4.6.4 Step 4: Generate Function Alternatives -- 4.6.5 Step 5: Generate Architecture Options -- 4.6.6 Step 6: Select the "Best" Architecture Option -- 4.7 Conclusions -- 4.8 Problems -- References -- Part II Detailed Development Activities -- 5 Antenna Element Technology Options -- 5.1 Introduction ---
5.2 Based Concepts of Antennas -- 5.3 Antenna Development Process -- 5.4 Conventional Dipole -- 5.5 Planar Inverted-F Antenna -- 5.6 Meander Line Antenna.
6.4.3 High-Power Amplifier and Driver Amplifier -- 6.4.4 Phase Shifter -- 6.4.5 Duplexer -- 6.5 T/R Module Manufacturing and Test -- 6.5.1 Integrated Circuit Manufacturing -- 6.5.2 Package Manufacturing -- 6.5.3 Interconnects Types -- 6.5.4 T/R Module Test -- 6.6 Examples of T/R Modules -- 6.6.1 A 3-D Ceramic T/R Module for Space-Based Applications -- 6.6.2 T/R Module Using Laminate Circuit Board Technology -- 6.6.3 60-GHz CMOS T/R Module Integrated with Antennas -- 6.7 Conclusions -- 6.8 Problems -- References -- 7 Thermal Design, Heat Transfer Trade Studies, and Reliability -- 7.1 Introduction -- 7.2 Heat Transfer Fundamentals at the Integrated Circuit Level -- 7.3 Reliability and MTTF -- 7.4 Example: Millimeter-Wave SATCOM Front End -- 7.5 Array Cooling Methods -- 7.5.1 The Challenge of Phased Array Cooling ---
7.5.2 Brick Array Cooling -- 7.5.3 Tile Array Cooling -- 7.6 Other Reliability Drivers for Phased Arrays -- 7.7 Materials Used for Thermal Management -- 7.8 Conclusions -- 7.9 Problems -- References -- 8 Analog versus Digital Beamforming -- 8.1 Introduction.
9.5.5 Frequency Multipliers -- 9.5.6 ADC -- 9.6 Analysis of DRXs -- 9.7 Conclusions -- 9.8 Problems -- References -- Part III System Modeling and Advanced Development Activities -- 10 Phased Array System Modeling -- 10.1 Introduction -- 10.2 LFOV Receiver Array -- 10.3 Multichannel Communication System Design -- 10.4 Stripmap Synthetic Aperture Radar -- 10.5 Radar Detection Performance -- 10.6 Conclusions -- 10.7 Problems -- References -- Appendix 10A Excel Spreadsheet for the LFOV Array -- Appendix 10B Scilab Code for the Communication System Receiver Array -- Appendix 10C Scilab Code for the Stripmap SAR Simulation -- Appendix 10D Gaussian ROC Curve Derivation -- 11 Advanced Development Activities for Phased Arrays -- 11.1 Introduction -- 11.2 System Risk Management -- 11.3 Advanced Development Activities ---
11.8 Conclusions -- 11.9 Problems -- References -- 12 Conclusions -- About the Authors -- Index.
3.1 Introduction to Use Cases -- 3.2 High-Altitude Platform Station -- 3.2.1 Introduction to HAPS -- 3.2.2 HAPS System Description with Key Challenges and Benefits -- 3.2.3 HAPS Examples and Summary -- 3.3 Medical Applications of Phased Arrays -- 3.3.1 Introduction to Medical Phased Arrays -- 3.3.2 Medical Arrays System Description with Key Challenges and Benefits -- 3.3.3 Medical Phased Array Examples and Summary -- 3.4 Phased Array for 5G MIMO Broadband -- 3.4.1 Introduction 5G Broadband Phased Arrays -- 3.4.2 5G Phased Array System Description with Key Challenges and Benefits -- 3.4.3 5G Phased Array Examples and Summary -- 3.5 Airborne Radar for Fighter Aircraft -- 3.5.1 Introduction to Military Phased Arrays -- 3.5.2 Airborne Phased Array System Description with Key Challenges and Benefits -- 3.5.3 Airborne Phased Array Examples and Summary ---
5.7 Microstrip Patch Antennas -- 5.8 Bowtie Dipole Antenna -- 5.9 Waveguide Radiators -- 5.10 Reflector Antenna -- 5.11 Vivaldi Tapered Slotline Antenna -- 5.12 Low-Profile Vivaldi Tapered Slot Antennas -- 5.13 Tightly Coupled Dipole Array -- 5.14 Conclusions -- 5.15 Problems -- References -- 6 Transmit/Receive Modules -- 6.1 Introduction -- 6.2 Technical Challenges Often Faced in T/R Module Development -- 6.2.1 Heat Transfer -- 6.2.2 Signal Integrity -- 6.2.3 Integration with Other Functions -- 6.2.4 Materials Compatibility -- 6.2.5 Electromagnetic Coupling -- 6.3 General Description of the T/R Module -- 6.3.1 System Location of the T/R Module -- 6.3.2 T/R Block Diagram -- 6.4 T/R Module Detailed Description -- 6.4.1 Low Noise Amplifier -- 6.4.2 Low Noise Amplifier Protection ---
8.2 Benefits and Challenges in Analog Beamforming -- 8.3 Benefits and Challenges in Digital Beamforming -- 8.4 Basic Digital Beamforming -- 8.5 Adaptive Beamforming -- 8.6 Errors in Beamforming and Their Effects -- 8.7 Multiple Access Methods for 5G Phased Arrays -- 8.7.1 Orthogonal Frequency Division Multiple Access -- 8.7.2 Code Division Multiple Access -- 8.7.3 Other Access Technologies -- 8.8 Conclusions -- 8.9 Problems -- References -- 9 Digital Receiver Exciters -- 9.1 Introduction -- 9.2 Digital Receiver Architecture Options -- 9.3 Example Trade Study on Digital Receiver Architecture -- 9.4 Digital Exciter Architecture Options -- 9.5 Main Components of a Digital Receiver Exciter -- 9.5.1 Low Noise Amplifier -- 9.5.2 Digital Attenuator -- 9.5.3 Frequency Mixer -- 9.5.4 Preselection, Image Rejection, and Antialiasing Filters ---
001905486
express
(Au-PeEL)EBL6881771
(MiAaPQ)EBC6881771
(OCoLC)1298391072

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC