Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 11.05.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
London : IWA Publishing, 2022
1 online resource (362 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781789061796 (electronic bk.)
ISBN 9781789063080
Print version: Ren, Zhiyong Jason Pathways to Water Sector Decarbonization, Carbon Capture and Utilization London : IWA Publishing,c2022 ISBN 9781789063080
Intro -- Cover -- Contents -- About the Editors -- List of Contributors -- Foreword by Kala Vairavamoorthy -- Foreword by Art K.Umble -- Preface -- Chapter 1: Toward a net zero circular water economy -- 1.1 THE WATER SECTOR AND THE CHALLENGES AND OPPORTUNITIES ON DECARBONIZATION -- 1.2 PATHWAYS TOWARD WATER AND WASTEWATER DECARBONIZATION -- 1.2.1 Decarbonization requires a better understanding of emission baseline -- 1.2.2 Decarbonization requires a combination of approaches and collaborations among stakeholders -- 1.2.3 Processes and technologies that enable energy and resource recovery -- 1.2.4 Processes and technologies that enable additional benefits of carbon capture and utilization, and watershed management -- 1.2.5 Case studies on utility decarbonization practice -- 1.3 THE PARADIGM CHANGE FOR A NET ZERO CIRCULAR WATER ECONOMY -- REFERENCES -- doi: 10.2166/9781789061796 -- Chapter 2: What can we learn from decarbonization of the energy sector? -- 2.1 INTRODUCTION: ENERGY AND WATER: SIMILARITIES, DIFFERENCES, AND A COMPLEX RELATIONSHIP -- 2.1.1 The energy-water nexus -- 2.1.2 Differences in scale -- 2.1.3 The carbon-water nexus -- 2.2 DECARBONIZATION OF THE ENERGY SECTOR -- 2.3 A FRAMEWORK FOR SUSTAINABILITY FOR ENERGY AND WATER -- 2.4 THE PACE OF DECARBONIZATION -- 2.4.1 Residential and commercial equipment -- 2.4.2 Transportation equipment -- 2.4.3 Utility equipment -- 2.4.4 Integration -- 2.5 CASE STUDIES -- 2.5.1 Energy efficient lighting -- 2.5.2 Electric vehicles -- 2.5.3 Cellulosic biomass -- 2.5.4 Wind and solar -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 3: Greenhouse gases in the urban water cycle -- 3.1 INTRODUCTION -- 3.1.1 Overview of the urban water cycle -- 3.1.2 Definition of scope 1, 2 and 3 emissions -- 3.1.3 Water footprint and carbon footprint -- 3.2 GREENHOUSE GASSES IN THE WATER CYCLE.
3.2.1 Scope 1 - direct emissions - from own and controlled sources -- 3.2.1.1 Design and construction of new assets -- 3.2.1.2 Water and wastewater collection systems -- 3.2.1.3 Water and wastewater treatment and sludge management -- 3.2.2 Scope 2 - GHGs from energy use -- 3.2.2.1 Pumping -- 3.2.2.2 Water treatment process -- 3.2.2.3 Wastewater treatment process -- 3.2.2.4 Scope 2 - energy generation -- 3.2.3 Scope 3 - indirect emissions from other activities -- 3.2.4 Carbon sequestration and mitigation -- 3.3 PROTOCOLS -- 3.3.1 International protocols -- 3.3.1.1 IPCC -- 3.3.1.2 World resources institute (WRI) -- 3.3.2 Regional protocols -- 3.3.2.1 United Kingdom - UKWIR -- 3.3.2.2 United States - LGOP -- 3.3.2.3 Germany - ECAM tool -- 3.3.2.4 Australia - NGER system -- 3.3.2.5 CCME - Canadian council of ministers of the environment -- 3.3.2.6 Summary of regional protocols -- 3.4 METHODS OF GHG QUANTIFICATION -- 3.4.1 Emission factors -- 3.4.2 Direct measurement -- 3.4.3 Models -- 3.4.4 Quantification method selection -- 3.5 A FRAMEWORK FOR CARBON FOOTPRINT ANALYSIS -- 3.5.1 A roadmap to reducing carbon footprint in the water cycle -- 3.5.1.1 Conserve water -- 3.5.1.2 Reduce water loss (distribution) and infiltration (collection) -- 3.5.1.3 Maximize energy generation -- 3.5.1.4 Be energy efficient -- 3.5.1.5 Maintain equipment -- REFERENCES -- Chapter 4: Operational optimization and control strategies for decarbonization in WRRFs -- 4.1 INTRODUCTION -- 4.2 OPTIMIZATION STRATEGIES AT THE PROCESS/OPERATION LEVEL -- 4.2.1 Wastewater pumping -- 4.2.2 Secondary treatment -- 4.2.3 Sludge treatment -- 4.3 OPERATIONAL STRATEGIES AT THE WHOLE FACILITY LEVEL -- 4.4 PATHWAYS FOR DECARBONIZATION AND FUTURE PERSPECTIVES -- REFERENCES -- Chapter 5: Energy and resource recovery using the anaerobic digestion platform.
6.4.1 Mechanisms of anodic and cathodic EFs -- 6.4.2 Synergy between EF and anaerobic digestion -- 6.5 CO2 MINERALIZATION IN MECC -- 6.6 OUTLOOK -- REFERENCES -- Chapter 7: Decarbonization potentials in nitrogen management -- 7.1 INTRODUCTION -- 7.1.1 Carbon footprint costs of nitrogen removal -- 7.1.1.1 Aeration -- 7.1.1.2 Alkalinity -- 7.1.1.3 Organic carbon -- 7.1.1.4 WRRF size and capacity -- 7.1.1.5 Nitrous oxide emissions -- 7.2 CARBON REMOVAL/DIVERSION IN PRIMARY TREATMENT -- 7.3 APPROACHES FOR CARBON EFFICIENT NITROGEN REMOVAL -- 7.3.1 Traditional nitrification/denitrification -- 7.3.2 Nitrite shunt and PNA (NOB out-selection) -- 7.3.3 Partial denitrification/anammox -- 7.3.4 Aeration, alkalinity, and COD requirements for mainstream nitrogen removal technologies -- 7.3.4.1 Implications of carbon diversion -- 7.3.5 Process control -- 7.4 SHORTCUT NITROGEN REMOVAL IMPLEMENTATIONS -- 7.4.1 Sidestream treatment -- 7.4.2 Mainstream PNA/nitrite shunt -- 7.4.3 Mainstream PdNA -- 7.4.4 Partial denitrification/anammox (PdNA) case study -- 7.5 CONCLUSIONS AND FUTURE OUTLOOK -- REFERENCES -- Chapter 8: Decarbonization potentials in phosphorus management in the water sector -- 8.1 OVERVIEW OF GLOBAL PHOSPHORUS CONSUMPTION AND DEMAND IN RELATION TO WATER SUSTAINABILITY -- 8.1.1 P management and decarbonization potential pathways -- 8.1.2 Phosphorus management and policy: Current status and practice -- 8.2 DIRECT DECARBONIZATION AND INDIRECT CARBON REDUCTION STRATEGIES FROM POINT SOURCE AND NON-POINT SOURCES OF PHOSPHORUS -- 8.2.1 Phosphorus in agricultural waste streams -- 8.2.1.1 Agricultural point sources: best management practices for decarbonization -- 8.2.1.2 Agricultural runoff: best management practices for decarbonization -- 8.2.2 Phosphorus in industrial effluent: Best management practices for decarbonization.
9.2.1 Microalgae.
5.1 CURRENT STATE OF THE ART FOR ANAEROBIC DIGESTION IN MUNICIPAL WASTEWATER RESOURCE RECOVERY FACILITIES -- 5.2 NEED FOR SLUDGE PRETREATMENT TO ENHANCE VIABILITY OF ANAEROBIC DIGESTION -- 5.3 DIVERSIFYING PORTFOLIO OF ANAEROBIC DIGESTION AT MUNICIPAL WASTEWATER FACILITIES - THE ADVENT OF ANAEROBIC CO-DIGESTION -- 5.3.1 Theoretical basis/substrates used -- 5.3.2 Challenges of ACoD -- 5.3.3 Current research on ACoD -- 5.4 ENHANCING THE VALUE OF THE PRODUCED BIOGAS THROUGH CO-GENERATION AND FURTHER PURIFICATION TO NATURAL GAS FOR PIPELINE DELIVE -- 5.4.1 Biomethane for combined heat and power production -- 5.4.2 Biomethane for electricity generation -- 5.4.3 Biomethane for upgrading and pipeline delivery -- 5.4.4 Biomethane for transportation -- 5.4.5 Biogas to valuable chemicals -- 5.5 ALTERING THE AD PLATFORM FOR HIGHER ORGANIC CARBON PRODUCT CAPTURE COUPLED WITH WATER REUSE AND NUTRIENT RECOVERY -- 5.6 ENERGY MANAGEMENT IN ANAEROBIC DIGESTION FOR OVERALL ENERGY NEUTRALITY OR ENERGY POSITIVE TREATMENT - THE CASE FOR DIRECT AN -- 5.7 TECHNO-ECONOMIC AND LIFE CYCLE ASSESSMENTS FOR SHAPING THE FUTURE OF ANAEROBIC DIGESTION -- 5.8 FUTURE STRATEGIES AND ROADMAPS TO DECARBONIZATION -- 5.9 ANAEROBIC DIGESTION TECHNIQUES FOR ACHIEVEMENT OF A CIRCULAR ECONOMY -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 6: Carbon valorization using the microbial electrochemical technology platform -- 6.1 INTRODUCTION -- 6.2 THE PRINCIPLES OF MICROBIAL ELECTROCHEMICAL CARBON VALORIZATION -- 6.2.1 Biocatalytic CO2 capture and conversion to organic chemicals in MES and EF -- 6.2.2 CO2 capture and mineralization in MECC -- 6.3 VALORIZATION OF CARBON COMPOUNDS BY MES -- 6.3.1 Methane or acetic acid production in MES -- 6.3.2 Role of hydrogen in MES -- 6.3.3 CO2 valorization potential from the MES platform -- 6.4 VALORIZATION OF CARBON COMPOUNDS BY ELECTROFERMENTATION.
8.2.3 Phosphorus in domestic waste streams -- 8.2.3.1 Source separated streams: best management practices for decarbonization -- 8.2.3.2 Domestic wastewater treatment: best management practices for decarbonization -- 8.2.4 Phosphorus in urban runoff and best management practices for decarbonization -- 8.3 DECARBONIZATION IN PHOSPHORUS REMOVAL AND RECOVERY PROCESSES -- 8.3.1 Carbon requirements in enhanced biological phosphorus removal processes -- 8.3.2 Carbon footprint reducing via operational strategies for EBPR -- 8.3.2.1 Advanced aeration control -- 8.3.2.2 Optimizing carbon source and chemical addition -- 8.3.3 Carbon footprint reducing via new pathway/process for EBPR -- 8.3.3.1 Innovations in P removal process - S2EBPR -- 8.3.3.2 Combined EBPR with innovations in N removal process -- 8.3.3.3 Combined EBPR with nitritation/denitritation -- 8.3.3.4 Combined EBPR with partial nitritation/anammox -- 8.3.3.5 DPAO-based processes -- 8.3.3.6 Coupled aerobic-anoxic nitrous decomposition operation (CANDO) -- 8.3.4 Additional technologies for phosphorus removal and recovery from wastewater streams with carbon footprint reduction potent -- 8.3.4.1 Phosphorus recovery technologies at WWTP -- 8.3.4.2 Constructed wetland -- 8.3.4.3 Microalgae cultivation for joint nutrient removal and energy production -- 8.3.4.4 Genetically modified PAOs for enhanced bio-P adsorption -- 8.4 QUANTIFICATION OF DECARBONIZATION POTENTIAL FROM PHOSPHORUS REMOVAL AND RECOVERY PROCESSES -- 8.4.1 LCA studies for the quantification of decarbonization potential for non-point sources -- 8.4.2 LCA studies for P removal and recovery processes in WWTPs and quantification of decarbonization potential -- 8.5 FUTURE OUTLOOK AND RESEARCH NEEDS -- REFERENCES -- Chapter 9: Decarbonization potentials using photobiological systems -- 9.1 INTRODUCTION -- 9.2 PHOTOSYNTHETIC WASTEWATER TREATMENT.
001905547
express
(Au-PeEL)EBL6986671
(MiAaPQ)EBC6986671
(OCoLC)1317832104

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC