Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 04.11.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
ONLINE
1st ed.
Reston : American Society of Civil Engineers, 2021
1 online resource (251 pages)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9780784483329 (electronic bk.)
Print version: Committee, Prepared by the Land Subsidence Task Investigation of Land Subsidence Due to Fluid Withdrawal Reston : American Society of Civil Engineers,c2021
4.1.6   Other Techniques of Subsurface Measurement -- 4.1.6.1   General -- 4.1.6.2   Casing-Collar Logging -- 4.1.6.3   Radioactive-Marker Logging -- 4.1.6.4   Inclinometers.
3.2   Stress Causing Aquifer-System Compaction -- 3.2.1   Static Stresses -- 3.2.2   Dynamic Stresses -- 3.3   Stress-Strain Relationship in Susceptible Aquifer Systems -- 3.3.1   Stress-Strain Analysis -- 3.3.2   Compressibilities of Clays and Sands from Tests in the Lab and Field -- References -- Book_5078_C004 -- CHAPTER 4 : Identification, Measurement, Mapping, and Monitoring -- 4.1   Ground-Based Geodetic Surveys -- 4.1.1   Precise Differential Leveling -- 4.1.2   Global Positioning System -- 4.1.3   Other Techniques for Measuring Land-Surface Change -- 4.1.4   Extensometry -- 4.1.4.1   Single and Double Pipe Borehole Extensometers -- 4.1.4.2   Anchored-Cable and Free-Pipe Extensometers -- 4.1.4.3   Slip Joints -- 4.1.4.4   Telescopic Extensometer -- 4.1.4.5   Extensometer Records -- 4.1.5   Tripod-Mounted LiDAR ---
4.1.6   Other Techniques of Subsurface Measurement -- 4.1.6.1   General -- 4.1.6.2   Casing-Collar Logging -- 4.1.6.3   Radioactive-Marker Logging -- 4.1.6.4   Inclinometers.
Intro -- Book_5078_C000 -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Book_5078_C001 -- Chapter 1 : Introduction -- 1.1   Purpose and Scope -- 1.2   Background -- 1.3   Occurrence and History of Subsidence -- 1.4   Problems Resulting from Subsidence -- References -- Book_5078_C002 -- CHAPTER 2 : Subsidence Processes -- 2.1   Compaction Caused by Fluid Extraction -- 2.1.1   Extraction of Pore Fluids -- 2.1.2   Groundwater -- 2.1.3   Hydrocarbons -- 2.1.4   Geothermal Fluids -- 2.2   Hydrocompaction -- References -- Book_5078_C003 -- Chapter 3 : Aquifer Mechanics and Land Subsidence due to Groundwater -- 3.1   Theory of Aquifer-System Compaction -- 3.1.1   Principle of Effective Stress -- 3.1.2   Aquifer-System Compressibility and Storage Concepts -- 3.1.3   Theory of Hydrodynamic Consolidation ---
5.3.2.2   Simulation of the Poroelasticity Model -- 5.3.3   Other Constitutive Models -- 5.3.4   Other Types of Subsidence Models -- 5.3.4.1   Simple Subsidence Estimates -- 5.3.4.2   Influence of Material within the Unpumped Overburden -- References -- Book_5078_C006 -- CHAPTER 6 : Methods to Mitigate Subsidence Caused by Groundwater Withdrawal -- 6.1   Reduction in Groundwater Withdrawal -- 6.2   Artificial Recharge of Aquifer Systems -- 6.3   Case Histories of the Methods Used -- 6.3.1   Shanghai, China -- 6.3.2   Venice, Italy -- 6.3.3   Japan -- 6.3.4   United States -- References -- Book_5078_A001 -- Appendix A -- Standards Used for Laboratory Tests and Field Sampling for Properties of Sediments in Subsiding Areas -- A.1   General Need of Tests -- A.2   Field Sampling -- A.3   Composite Logs of Core Holes -- A.4   Methods of Laboratory Analysis ---
4.2   Airborne and Spaced-Based Geodetic Surveys -- 4.2.1   LiDAR -- 4.2.1.1   Data Density -- 4.2.1.2   Geodetic Control -- 4.2.1.3   Quality Assurance/Quality Control -- 4.2.2   Synthetic Aperture Radar Interferometry -- 4.3   Horizontal Displacement -- References -- Book_5078_C005 -- CHAPTER 5 : Subsidence Analysis and Simulation -- 5.1   Empirical Methods -- 5.2   Quasi-Theoretical Approach -- 5.2.1   Wadachi ’ s (1940) Model -- 5.2.2   Subsidence as a Function of Liquid Extraction -- 5.2.3   Ratio of Subsidence to Head Decline -- 5.2.4   Clay Content-Subsidence Relation -- 5.2.5   Depth-Porosity Model -- 5.3   Theoretical Approach -- 5.3.1   Aquitard Drainage Model -- 5.3.1.1   Conventional Groundwater Flow Theory -- 5.3.1.2   Simulation of the Aquitard Drainage Model -- 5.3.2   Poroelasticity Model -- 5.3.2.1   Poroelasticity Theory ---
5.3.2.2   Simulation of the Poroelasticity Model -- 5.3.3   Other Constitutive Models -- 5.3.4   Other Types of Subsidence Models -- 5.3.4.1   Simple Subsidence Estimates -- 5.3.4.2   Influence of Material within the Unpumped Overburden -- References -- Book_5078_C006 -- CHAPTER 6 : Methods to Mitigate Subsidence Caused by Groundwater Withdrawal -- 6.1   Reduction in Groundwater Withdrawal -- 6.2   Artificial Recharge of Aquifer Systems -- 6.3   Case Histories of the Methods Used -- 6.3.1   Shanghai, China -- 6.3.2   Venice, Italy -- 6.3.3   Japan -- 6.3.4   United States -- References -- Book_5078_A001 -- Appendix A -- Standards Used for Laboratory Tests and Field Sampling for Properties of Sediments in Subsiding Areas -- A.1   General Need of Tests -- A.2   Field Sampling -- A.3   Composite Logs of Core Holes -- A.4   Methods of Laboratory Analysis ---
A.4.1   Particle-Size Distribution -- A.4.2   Hydraulic Conductivity -- A.4.3   Unit Weight -- A.4.4   Specific Gravity of Solids.
4.2   Airborne and Spaced-Based Geodetic Surveys -- 4.2.1   LiDAR -- 4.2.1.1   Data Density -- 4.2.1.2   Geodetic Control -- 4.2.1.3   Quality Assurance/Quality Control -- 4.2.2   Synthetic Aperture Radar Interferometry -- 4.3   Horizontal Displacement -- References -- Book_5078_C005 -- CHAPTER 5 : Subsidence Analysis and Simulation -- 5.1   Empirical Methods -- 5.2   Quasi-Theoretical Approach -- 5.2.1   Wadachi ’ s (1940) Model -- 5.2.2   Subsidence as a Function of Liquid Extraction -- 5.2.3   Ratio of Subsidence to Head Decline -- 5.2.4   Clay Content-Subsidence Relation -- 5.2.5   Depth-Porosity Model -- 5.3   Theoretical Approach -- 5.3.1   Aquitard Drainage Model -- 5.3.1.1   Conventional Groundwater Flow Theory -- 5.3.1.2   Simulation of the Aquitard Drainage Model -- 5.3.2   Poroelasticity Model -- 5.3.2.1   Poroelasticity Theory ---
A.4.5   Porosity and Void Ratio -- A.4.6   Water (Moisture) Content -- A.4.7   Atterberg Limits -- A.4.7.1   Liquid Limit -- A.4.7.2   Plastic Limit -- A.4.8   Consolidation -- A.5   Results of Laboratory Analyses -- A.5.1   Particle-Size Distribution -- A.5.1.1   Sediment Classification Triangles -- A.5.1.2   Statistical Measures -- A.5.2   Hydraulic Conductivity -- A.5.3   Specific Gravity, Unit Weight, and Porosity -- A.5.4   Atterberg Limits and Indexes -- A.5.5   Consolidation -- A.5.5.1   Estimation of the Compression Index -- A.5.5.2   Correlation of Compression Indexes -- A.5.5.3   Estimation of the Coefficients of Consolidation -- A.5.5.4   Effect of Soil Classification -- A.5.5.5   Relationship between Consolidation Characteristics and LLs -- A.5.6   Relationships between Soil-Engineering and Hydrogeologic Terms and Concepts -- A.5.6.1   Pore Volume -- A.5.6.2   Moisture Content -- A.5.6.3   Compressibility -- References -- Book_5078_A002 -- Appendix B : Notations, Symbols, and Glossary -- B.1   Notations and Symbols -- B.2   Glossary -- References -- Book_5078_A003 -- Appendix C -- Conversion Table -- Book_5078_IDX.
Investigation of Land Subsidence due to Fluid Withdrawalprovides a detailed overview of the occurrence and control of land subsidence due to fluid withdrawal..
001905851
express
(Au-PeEL)EBL29044382
(MiAaPQ)EBC29044382
(OCoLC)1294149285

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC