Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 02.03.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
London : Woodhead Publishing, 2022
1 online resource
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9780128230138 (e-kniha)
ISBN 9780128217306
Print version: ISBN 0128217308 ISBN 9780128217306
Obsahuje rejstřík
001931730
List of contributors // About the editors // Foreword // Part One Eco-friendly innovative cement and concrete 1 // 1 Foamed concrete containing industrial wastes 3 - Natt Makul // 1.1 Introduction 3 // 1.2 Constituent materials 5 // 1.3 Proportioning of foam concretes 6 // 1.4 Form concrete properties 7 // 1.5 Functional characteristics 12 // 1.6 Fresh and hardened features 14 // 1.7 Summary 18 // References 18 // 2 Valorization of industrial byproducts and wastes as sustainable construction materials 23 - U. Johnson Alengaram // 2.1 Overview of industrial byproducts and wastes as sustainable // cement replacement materials 23 // 2.2 Ground granulated blast furnace slag 24 // 2.3 Fly ash 26 // 2.4 Metakaolin 27 // 2.5 Rice husk ash 27 // 2.6 Palm oil fuel ash 28 // 2.7 Palm oil clinker ash 29 // 2.8 Coal bottom ash 30 // 2.9 Effect of sustainable cement replacement materials 30 // 2.10 Significance of achieving sustainability through replacement of conventional fine and coarse aggregates 31 // 2.11 Manufactured sand 32 // 2.12 Palm oil clinker sand 34 // 2.13 Coal bottom ash 36 // 2.14 Oil palm shell as coarse aggregate 36 // 2.15 Palm oil clinker as coarse aggregates 38 // 2.16 Properties of lightweight aggregates 39 // References 41 // Enunciation of lightweight and self-compacting concretes using non-conventional materials - U. Johnson Alengaram // 3.1 Properties of lightweight concrete // References // // 4 The use of construction and demolition waste as a recycled aggregate in sustainable concrete production: workability, strength and durability properties 63 - Ayobami Busari // 4.1 Introduction 63 // 4.2 Review of literature 64 // 4.3 Conclusion 71 // References 73 // Further reading 81 // 5 Natural fibers 85 - J.M. Khatib, M.M, Machaka, and A.M. Elkordi // 5.1 Introduction 85 // 5.2 Types of natural fibers in construction 86 //
5.3 Manufacturing and production of natural fibers 88 // 5.4 Treatment of natural fibers 90 // 5.5 Using fibers in construction 91 // 5.6 Using fibers in concrete 93 // 5.7 Fresh properties of concrete containing natural fibers 95 // 5.8 Compressive strength 96 // 5.9 Flexural strength 97 // 5.10 Shrinkage and expansion 98 // 5.11 Ductility and impact resistance 98 // 5.12 Durability 99 // 5.13 Economic, environmental and societal factors 100 // 5.14 Concluding remarks 101 // References 102 // 6 Eco-friendly fiber-reinforced concretes 109 - R. Prakash, Sudharshan N. Raman, C. Subramanian, and N. Dixyah // 6.1 Introduction 109 // 6.2 Aggregates: environmental impact 110 // 6.3 Sustainability of coconut shell aggregate 112 // 6.4 Cement production: carbon emission 117 // 6.5 Fibers in concrete 118 // 6.6 Steel fiber-reinforced CS concrete 119 // 6.7 Sisal fiber-reinforced CS concrete 125 // 6.8 Roselle fiber-reinforced CS concrete 132 // 6.9 Ecofriendliness and sustainability of fiber-reinforced concrete 139 // 6.10
Future trends 139 // 6.11 Conclusions 140 // References 141 // Part Two Use of industrial waste as aggregates: properties of concrete // 7 Energy-saving materials - Lateef N, Assi, Ali Alsalman, Kealy Carter, and Paul Ziehl // 7.1 Introduction // 7.2 Mixture selection // 7.3 Energy produced // 7.4 CO2 emissions // 7.5 Results and discussion // 7.6 Concluding remarks // List of acronyms and notations // References // Further reading // 8 Fresh and mechanical properties of concrete made with recycled plastic aggregates - Rabar H. Faraj, Hemn Unis Ahmed, Hunar F. Hama ali, and Aryan Far H. Sherwani // 8.1 Introduction // 8.2 Types and preparation of plastic waste used in the concrete production // 8.3 Properties of concrete containing recycled plastic aggregates // 8.4 Empirical relationships among different properties of RPAC // 8.5 Summary // References // 9 Recycled glass as a concrete component: possibilities and challenges - Aziz Hasan Mahmood and Alireza Kashani // 9.1 Introduction // 9.2 Production and recycling of glass as aggregate // 9.3 Properties of glass aggregate // 9.4 Concrete incorporating glass aggregate // 9.5 Alkali-silica reaction of glass aggregate // 9.6 Ground glass as a pozzolan // 9.7 Glass aggregate in alkali-activated binders and foam concrete // 9.8 Conclusions // References // 10 Recycled aggregate concrete: mechanical and durability performance - Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir, and Yu-Fei Wu // 10.1 Introduction // 10.2 Recycled coarse aggregates // 10.3 Recycled aggregate concrete // 10.4 Future trends // References // 11 Microstructure and properties of concrete with ceramic wastes 229 - Qiang Zeng, Le Li, Jiahan Liu, Tingfeng Lu, Jinyi Xu, Ahmed Al-Mansour, Jiyang Wang, and Jin Xia // 11.1 Introduction 229 // 11.2 General characteristics of ceramic wastes 230 // 11.3 Properties of concrete with ceramic wastes 233 //
11.4 Microstructure of concrete with ceramic wastes 241 // 11.5 Conclusion and outlooks 248 // References 248 // 12 Agricultural plastic waste - E. Schettini, G. Scarascia-Mugnozza, I. Blanco, F. Convertino, and G. Vox // 12.1 Plastics in agriculture 255 // 12.2 Agricultural plastic waste management 258 // 12.3 Geographical information systems for agricultural plastic waste mapping 260 // 12.4 Agricultural plastic waste mapping using satellite images 262 // 12.5 Conclusions 264 // Acknowledgments 265 // References 265 // 13 Recycling and applications of steel slag aggregates - Qiao Dong and Xueqin Chen // 13.1 Introduction // 13.2 Steel slag aggregate (SSA) // 13.3 Performance of SSA concrete // 13.4 Conclusions // References // 14 Use of quarry waste in concrete and cementitious mortars 289 - Thomaida Polydorou, Nicholas Kyriakides, Kyriacos Neocleous, and Diofantos Hadjimitsis // 14.1 Introduction 289 // 14.2 Use of quarry waste in concrete and cementitious mortars 290 // 14.3 Effects of quarry waste on fresh concrete and cementitious mortar properties 290 // 14.4 Effects of quarry waste on hardened concrete and cementitious mortar properties 294 // 14.5 Conclusion 302 // References 303 // 15 Implementation of agricultural crop wastes toward green construction materials - Sara Boudali, Bahira Abdulsalam, Ahmed Soliman, Sebastien Poncet, Stephan Godbout, Johann Palacios, and Adel ElSafty // 15.1 Introduction // References // 16 Balancing sustainability, workability, and hardened behavior in the mix design of self-compacting concrete 333 - Victor Revilla-Cuesta, Flora Faleschini, Marta Skaf, Vanesa Ortega-Lopez, and Juan M. Manso // 16.1 Introduction // 16.2 Properties of recycled concrete aggregate // 16.3 Particularities and mix design of self-compacting concrete // 16.4 Fresh behavior: effect of RCA addition //
16.5 Hardened behavior: Strength and stiffness of SCC containing RCA // 16.6 Conclusions // References // 17 Design guidelines for structural and non-structural applications 359 - Flora Faleschini, Mariano Angelo Zanini, and Cristoforo Demartino // 17.1 Introduction 359 // 17.2 Environmental and economic aspects: benefits and constraints 360 // 17.3 Recycled aggregates and other industrial aggregates in concrete mix designs 362 // 17.4 Design of reinforced concrete structures with EAF concrete 369 // 17.5 Conclusions 380 // References 381 // 18 Strength and microstructure properties of self-compacting concrete using mineral admixtures. Case study I - S.S. Vivek and G. Dhinakaran // Introduction // Self-compacting concrete (SCC) // Mineral admixtures from industrial waste for SCC preparation // Strength of binary and ternary blend SCC with mineral admixtures // 18.5 Cost analysis // 18.6 Conclusions // References // 19 Durability properties of self-compacting concrete using mineral admixtures. Case study II - 5.5 . Vivek and G. Dhinakaran // 19.1 Introduction // 19.2 Comparison between CVC and SCC // 19.3 Classification of SCC // 19.4 Binary and ternary SCC mixes // 19.5 Durability studies on binary and ternary blend SCC // 19.6 SCC applications // 19.7 Conclusions // References // Part Three Innovative binders: alkali-activated and geopolymer concrete 419 // 20 Difference between geopolymers and alkali-activated materials 421 - Parham Shoaei, Farshad Ameri, Misagh Karimzadeh, Erfan Atabakhsh, Seyed Alireza Zareei, and Babak Behforouz // 20.1 Introduction 421 // 20.2 Zero-cement versus cementitious binders 422 // 20.3 History and development of AAMs and GPs 422 // 20.4 AAMs versus GPs 423 // 20.5 Challenges and opportunities 429 // References 430 //
21 Geopolymer binders containing construction and demolition waste - Sina Dadsetan, Hocine Siad, Mohamed Lachemi, Obaid Mahmoodi, and Mustafa Sahmaran // 21.1 Introduction // 21.2 Geopolymer terminology: effective chemical and physical factors // 21.3 Characterization of construction and demolition wastes (CDW) as aluminosilicate resources // 21.4 An overview of CDW-based geopolymer binders // 21.5 Properties of CDW-based geopolymers // 21.6 Future development and challenges of CDW-based geopolymer // 21.7 Concluding remarks // Acknowledgments // References // 22 On the properties of sustainable concrete containing mineral admixtures 475 - Francesco Colangelo, Ilenia Farina, Ivan Moccia, Marco Ruggiero, and Raffaele Cioffi // 22.1 Introduction 475 // 22.2 Materials and methods 477 // 22.3 Experimental results 479 // 22.4 Results and discussion 483 // 22.5 Conclusions 485 // References 486 // 23 Sustainable alkali-activated materials 489 - Mohammad Jamalimoghadam, Rassoul Ajalloeian, and Amirhomayoun Saffarzadeh // 23.1 Introduction 489 // 23.2 Management of industrial waste in the preparation of // alkali-activated cement materials 491 // 23.3 Radioactive waste and toxic contaminants stabilization 497 // 23.4 High-performance alkali-activated cement 498 // 23.5 Water and wastewater treatment 499 // 23.6 Soil stabilization 501 // 23.7 Future trends 501 // References 502 // Further reading 508 // 24 Design guidelines for structural and non-structural applications 509 - Kwok Wei Shah and Ghasan Fahim Huseien // 24.1 Introduction 509 // 24.2 Effect of binding materials 511 // 24.3 Effect of aggregates type 512 // 24.4 Effect of alkaline solution 515 // 24.5 Effect of binder to aggregates 518 // 24.6 Alkali-activated as high performance repair materials 519 // 24.7 Beam flexural behavior 521 // 24.8 Conclusions 522 // References 523 //
25 Future trends: nanomaterials in alkali-activated composites 529 - Shaswat Kumar Das, R.S. Krishna, Subhabrata Mishra, Syed Mohammed Mustakim, Malaya Kumar Jena, Ankit Kumar Tripathy, and Trilochan Sahu // 25.1 Introduction 529 // 25.2 Nanomaterials in AAC 530 // 25.3 Challenges and recommendations for use of nanomaterials // in AAC 546 // References 546 // Part Four Life cycle assessment of concrete // 26 Calculation of the environmental impact of the integration of industrial waste in concrete using LCA 553 - Jorge de Brito, Hisham Hafez, Raw az Kurda, and Jose Silvestre // 26.1 Introduction 553 // 26.2 LCA methodology for the use of industrial waste in concrete 556 // References 571 // Further reading 576 // 27 Role of transport distance on the environmental impact of the construction and demolition waste (CDW) recycling process 579 - Lais Peixoto Rosado, Beatriz Leao Evangelista de Lara, and Carmenlucia Santos Giordano Penteado // 27.1 Introduction 579 // 27.2 Premises for considering the transport distances of C&DW and recycled aggregates L 580 // 27.3 Methodological aspects related to transport in LCA studies 585 // 27.4 Influence of transport distance on LCA results 590 // 27.5 Conclusions 591 // Acknowledgments 591 // References 591 // 28 Management of industrial waste and cost analysis - Runxiao Zhang, Tanvir S. Qureshi, and Daman K. Panesar // 28.1 Introduction // 28.2 Coal-burning ash // 28.3 Iron and steel slags // 28.4 Silica fume // 28.5 Conclusion // References // 29 Use of industrial waste in construction and a cost analysis 615 - Runxiao Zhang, Tanvir S. Qureshi, and Daman K. Panesar // 29.1 Introduction 615 // 29.2 Utilization in construction 615 // 29.3 Cost analysis 624 // 29.4 Future perspectives 629 // 29.5 Conclusion 632 // References 632 //
30 Life cycle assessment (LCA) of concrete containing waste materials: comparative studies 637 - Mohammad Saberian, Jingxuan Zhang, Akvan Gajanayake, Jie Li, Guomin Zhang, and Mahdi Boroujeni // 30.1 Introduction 637 // 30.2 Methodological framework 639 // 30.3 Conceptual basis of life cycle assessment (LCA) 639 // 30.4 Comparative LCA studies of waste materials as substitute components in concrete 641 // 30.5 Discussions 648 // 30.6 Conclusions and further research 652 // References 653 // 31 Opportunities and future challenges of geopolymer mortars for sustainable development - Antonella Petrillo, Ilenia Farina, Marta Travaglioni, Cinzia Salzano, Salvatore ..., Antonio Ramondo, Renato Olivares, Luigi Cossentino, and Raffaele Cioffi // 31.1 Introduction // 31.2 Portland cement versus geopolymer concrete // 31.3 Environmental and sustainable perspective of geopolymer // 31.4 Brief analysis of LCA on geopolymer mortars // 31.5 Conclusions // Nomenclature // Acknowledgments // References // Further reading // Index
(OCoLC)1287200058

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC