Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 02.03.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
London : Academic Press, 2022
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9780128217603 (e-kniha)
ISBN 9780128217504 (print)
001931779
Contributors // Preface // Acknowledgments // Part 1 // State of the art of robots for endoscopy // 1. Robotics in surgery and clinical application - Giovanni Dapri // Introduction // Robot-assisted minimally invasive surgery (RAMIS) // 1.2.1 Senhance Surgical Robotic System // 1.2.2 Flex Robotic System // Auris Robotic Endoscopy System (ARES) // 1.2.4 University of Nebraska laparoscopic single-incision robot // 1.2.5 SPORT Surgical System // 1.2.6 Mazor robotics // 1.2.7 Einstein // 1.2.8 Verb surgical // 1.2.9 Freehand // 1.2.10 Stiffness controllable flexible and learnable manipulator for surgical operations (STIFF-FLOP) // 1.2.11 A miniature robot for retraction tasks under vision assistance in MIS // Clinical applications // Conclusions // References // 2. Artificial intelligence for medical robotics - Erwin Loh and Tam Nguyen // Background // 2.1.1 Eye surgery // 2.1.2 Neurosurgery // 2.1.3 Cardiac Surgery 24 // 2.1.4 Orthopedic surgery 24 // 2.1.5 Minimally invasive surgery (MIS) 25 // 2.2 Al in robotic surgery 25 // 2.3 AI in diagnosis (pathology/radiology systems) 25 // 2.4 Al in virtual reality (VR) and simulation 26 // 2.5 AI in teaching and training 26 // 2.6 Al in surgical planning and robotic-assisted surgery 27 // 2.7 Limitations 27 // 2.8 Conclusions 28 // References 29 // 3. Colonoscopy robots - Yu Huan and Gastone Ciuti // 3.1 Introduction 31 // 3.2 Commercially certified robotic colonoscopes 33 // 3.3 Research-oriented colonoscopy robots 39 // 3.4 Al in colonoscopy 48 // 3.5 Discussion and conclusions: What is now and what’s next? 51 // Acknowledgments 53 // Conflicts of interest 53 // References 53 // 4. Soft robotic systems for endoscopic interventions - Sara-Adela Abad, Alberto Arezzo, Shervanthi Homer-Vanniasinkam, and Helge A Wurdemann // 4.1 Introduction 61 // 4.2 Overview of endoscopic procedures 63 //
4.2.1 Visual examination and diagnostic procedures 63 // 4.2.2 Endoscopic treatments 67 // 4.3 Review of commercially available solutions for endoscopic procedures 69 // 4.3.1 Instruments for optical examination 69 // 4.3.2 Instruments for therapeutic endoscopy 70 // 4.3.3 Challenges in current endoscopic interventions 77 // 4.4 Soft robotic systems for endoscopic procedures: State-of-the-art in research 78 // 4.4.1 Soft robotic instruments for optical examination 80 // 4.4.2 Soft robotic instruments for therapeutic endoscopy 82 // 4.4.3 Soft haptic technologies for minimally invasive endoscopic procedures 83 // 4.4.4 Technical challenges for emerging soft robotic, endoscopic tools 84 // 4.5 Conclusions and potential opportunities for endoscopic soft robotic systems 86 // Acknowledgment 87 // References 87 // 5. Simulators - Andrea Moglia // 5.1 Introduction 95 // 5.2 Required skills for MAS 96 // 5.3 Human factors 96 // 5.4 Training: aviation vs surgery 96 // 5.5 Types of surgical simulators 97 // 5.5.1 Animal tissues 97 // 5.5.2 Synthetic models 97 // 5.5.3 Cadaver tissues 97 // 5.5.4 Virtual reality simulators 97 // 5.6 VR simulators for RALS 98 // 5.6.1 da Vinci Skills Simulator 98 // 5.6.2 dV-Trainer 98 // 5.6.3 Robotic Surgical Simulator 100 // 5.6.4 RobotiX Mentor 101 // 5.7 Evidence from the published literature 102 // 5.8 Curriculum 104 // 5.8.1 Fundamentals of Robotic Surgery 107 // 5.8.2 Robotic Training Network 107 // 5.8.3 Society of European Robotic Gynaecological Surgery 108 // 5.8.4 European Society of Thoracic Surgeons and European Association for Cardio-Thoracic Surgery 108 // 5.8.5 European Association of Urology Robotic Urology Section 108 // 5.8.6 Morristown protocol 108 // 5.8.7 Curriculum on pancreaticoduodenectomy 109 // 5.9 Future research 109 // References 110 //
Part 2 // Materials and engineering design // 6. Smart materials for mini-actuators - Gianluca Rizzello and Paul Motzki // 6.1 Introduction 117 // 6.2 Shape memory alloy (SMA) 119 // 6.2.1 SMA material operating principle 119 // 6.2.2 SMA actuators 122 // 6.2.3 SMA applications in the biomedical field 127 // 6.3 Dielectric elastomer (DE) 137 // 6.3.1 DE material operating principle 137 // 6.3.2 DE actuators 140 // 6.3.3 DE applications in the biomedical field 146 // 6.4 Conclusions 155 // References 156 // Fabrication of endoluminal medical devices - Mario Milazzo and Cesare Stefanini // 7.1 Introduction 165 // 7.2 Developing endoluminal devices: From scaling laws to the fabrication 167 // 7.2.1 Scale-related issues: Physical laws 168 // 7.2.2 Reusability issues for endoluminal devices 170 // 7.2.3 Fabrication technologies for endoluminal devices 171 // 7.2.4 Micromachining 171 // 7.2.5 Additive manufacturing technologies: From // 3D to 4D printing 173 // 7.2.6 Electro-discharge machining 174 // 7.2.7 Injection molding 174 // 7.2.8 Laser-based machining 174 // 7.3 Applications of endoluminal microdevices 174 // 7.3.1 Rigid systems 175 // 7.3.2 Articulated assemblies 177 // 7.3.3 Flexible tethered system 178 // 7.3.4 Wireless devices 180 // 7.4 Conclusions and future outlook 181 // Acknowledgments 183 // References 184 // 8. Modeling and control strategies for flexible devices - M. Taha Chikhaoui and Benoft Rosa // 8.1 Introduction 187 // 8.2 Modeling of continuum robots 188 // 8.2.1 Geometry-based modeling 190 // 8.2.2 Mechanics-based modeling 191 // 8.2.3 Data-based models 194 // 8.2.4 Challenges and future directions 196 // 8.3 Control strategies 196 // 8.3.1 End-effector control 197 // 8.3.2 Multiobjective control 201 // 8.3.3 Recent trends 203 // 8.3.4 Discussions 205 // 8.4 Conclusions 206 // References 207 //
9. Ultrasound technology for capsule endoscopy - Alexandru C. Moldovan, Mihnea V. Turcanu, // Srinjoy Mitra, and Sandy Cochran // 9.1 Introduction 215 // 9.2 Medical ultrasound technology 216 // 9.2.1 Ultrasonic transducers 216 // 9.2.2 Ultrasound electronics 219 // 9.2.3 Diagnostic USCE energy consumption and self-heating 220 // 9.2.4 Therapeutic technologies 221 // 9.2.5 Robotic capsules 222 // 9.3 USCE for diagnostic ultrasound imaging 222 // 9.3.1 Imaging geometries 223 // 9.3.2 Single-element transducers 223 // 9.3.3 Transducer arrays 228 // 9.4 USCE for ultrasound therapy 230 // 9.4.1 Technologies 230 // 9.4.2 Single-element transducers 231 // 9.4.3 Transducer arrays 233 // 9.5 Future developments 233 // 9.5.1 Diagnosis 233 // 9.5.2 Therapy 234 // 9.5.3 Hybridized multimodal USCE devices 235 // 9.6 Conclusions 236 // References 236 // 10. Modeling of capsule-intestine contact - Yang Liu, Jiyuan Tian, Bingyong Guo, and Shyam Prasad // 10.1 Introduction 241 // 10.2 Mathematical modeling of capsule-intestine contact 242 // 10.2.1 Model 243 // 10.2.2 Mode 2 244 // 10.2.3 Mode 245 // 10.3 Finite element modeling of capsule-intestine contact 247 // 10.3.1 Model 247 // 10.3.2 Mode 2 249 // 10.3.3 Mode 249 // 10.4 Results and analysis 250 // 10.5 Conclusions 254 // References 254 // x Contents // 11. Haptic interfaces - Peter P. Pott // 11.1 Human haptic perception 257 // 11.1.1 Introduction 257 // 11.1.2 Anatomic and physiologic background 258 // 11.1.3 Quantifying senses 260 // 11.2 Engineering 264 // 11.2.1 Impedance 264 // 11.2.2 Haptic transparency 264 // 11.2.3 One kHz as the engineering goal of a haptic system 265 // 11.3 Haptic input devices 265 // 11.3.1 History and state of the art 265 // 11.3.2 Haptic feedback systems 266 // 11.3.3 Tactile feedback systems 268 // 11.3.4 Summary 271 // 11.4 Pseudohaptics 271 // 11.4.1 Acceleration mapping 271 //
11.4.2 Displacement-force mapping 271 // References 273 // 12. Case study of vision systems: Optimized compression architecture for wireless endorobots - Abdelkrim Zitouni, Nedra Jarray, and Majdi Elhajji // 12.1 Introduction 275 // 12.2 Related works 276 // 12.3 Architecture design 278 // 12.3.1 Compression step 278 // 12.3.2 Coding step 282 // 12.3.3 Communication step 283 // 12.4 Experimental results 284 // 12.4.1 PSNR and CR results relative to standard algorithms 286 // 12.4.2 PSNR and CR results relative to related works 286 // 12.4.3 FPGA synthesis results 288 // 12.5 Conclusions 290 // References 291 // Part 3 // Ethics, regulation, and project management // 13. Regulating endorobots in the European Union: An overview of the ethical and legal framework - Federico Costantini and Fabio Balducci Romano // 13.1 Introduction 297 // 13.2 Ethics and technology: Endorobots as "social robots" 300 // 13.2.1 Roboethics: Between "machine ethics" and "engineering ethics" 301 // 13.2.2 Three perspectives in "engineering ethics" 302 // 13.2.3 Final remarks on "roboethics" 305 // 13.3 Legal framework of endorobots in the European Union 305 // 13.3.1 EU regulation on medical devices 306 // 13.3.2 The challenging definition of medical devices 308 // 13.3.3 The allocation of liability for endorobots 309 // 13.3.4 Final remarks on the legal framework 311 // 13.4 Conclusions 312 // Author contributions 312 // References 312 // 14. Healthcare data governance in the EU: Main challenges in personal data protection - Federico Costantini and Giada Soncini // 14.1 Introduction: Healthcare data and endorobots 319 // 14.2 An overview of healthcare data governance in the European Union 320 // 14.2.1 Confidentiality and information security 321 // 14.2.2 Openness and transparency: "Open data" and "non-personal data" 323 // 14.3 Personal data 325 //
14.3.1 Personal data protection issues before data collection 327 // 14.3.2 Personal data protection issues after collection 330 // 14.4 Conclusions 331 // Author contributions 332 // References 333 // 15. Project management - Pietro Raffaini and Luigi Manfredi // 15.1 Introduction 337 // 15.2 Literature review and project management (PM) technique 338 // 15.2.1 Iron triangle and project performance 338 // 15.2.2 Gantt chart 341 // 15.2.3 Critical path method (CPM) 343 // 15.2.4 The project evaluation and review / technique (PERT) chart 343 // 15.2.5 Comparison between PERT, Gantt, and CPM 345 // 15.3 Internal and external factors influencing PM, organizations management, and technology readiness level 346 // 15.3.1 Stakeholders 346 // 15.3.2 Product development and management association (PDMA) // 15.3.3 Workgroup, team, functional, and cross-functional team // 15.3.4 Management strategies in medical devices // 15.4 Technology readiness level (TRL) // 15.5 Applications // 15.6 Conclusions // References // 16. Future trends - Luigi Manfredi // 16.1 Introduction // 16.2 Design approach: Tethered vs. untethered // 16.3 Anatomy // 16.3.1 Gastrointestinal (GI) tract // 16.3.2 The respiratory system // 16.3.3 The circulatory system // 16.3.4 The central nervous system // 16.3.5 The urinary system and the prostate // 16.3.6 The visual system // 16.3.7 The auditory system // 16.3.8 The fetus // 16.4 Challenges ahead: Al & ML, miniaturization of smart // materials, ethics, and regulations // 16.4.1 AI&ML // 16.4.2 Smart materials // 16.4.3 Ethics and regulations // 16.4.4 Usability // 16.4.5 Commercial challenges // 16.5 Conclusions // References // Index
(OCoLC)1291313176

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC