Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 13.07.2024. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Third edition
Weinheim : Wiley-VCH, [2022]
xvii, 269 stran : ilustrace ; 25 cm

objednat
ISBN 978-3-527-41410-9 (brožováno)
Obsahuje rejstřík
"Solid state physics enables readers to easily understand the basics of solid state physics. Solid state physics is a successful short textbook that gives a clear and concise introduction to its subject. The presentation is suitable for students who are exposed to this topic for the first time. Each chapter starts with basic principles and gently progresses to more advanced concepts, using easy-to-follow explanations and keeping mathematical formalism to a minimum. This new edition is thoroughly revised, with easier-to-understand descriptions of metallic and covalent bonding, a straightforward proof of Bloch’s theorem, a simpler approach to the nearly free electron model, and enhanced pedagogical features, such as more than 100 discussion questions, 70 problems - including problems to train the students’ skills to find computational solutions - and multiple-choice questions at the end of each chapter, with solutions in the book for self-training. Solid state physics introduces the readers to: Crystal structures and underlying bonding mechanisms ; The mechanical and vibrational properties of solids ; Electronic properties in both a classical and a quantum mechanical picture, with a treatment of the electronic phenomena in metals, semiconductors and insulators ; More advanced subjects, such as magnetism, superconductivity and phenomena emerging for nano-scaled solids. For bachelor’s students in physics, materials sciences, engineering sciences, and chemistry, Solid state physics serves as an introductory textbook, with many helpful supplementary learning resources included throughout the text and available online, to aid in reader comprehension."--Nakladatelská anotace.
001946589
Preface of the First Edition XI // Preface of the Second Edition XIII // Physical Constants and Energy Equivalents XV // Crystal Structures 1 // General Description of Crystal Structures 2 Some Important Crystal Structures 4 Cubic Structures 4 Close-Packed Structures 5 Structures of Covalently Bonded Solids 6 Crystal Structure Determination 7 X-Ray Diffraction 7 Bragg Theory 7 // Lattice Planes and Miller Indices 8 // General Diffraction Theory 9 // The Reciprocal Lattice 11 // The Meaning of the Reciprocal Lattice 12 // X-Ray Diffraction from Periodic Structures 14 // The Ewald Construction IS // Relation Between Bragg and Laue Theory 16 // Other Methods for Structural Determination 17 // Inelastic Scattering 17 // Further Reading 18 // Discussion and Problems 18 // Bonding in Solids 23 // Attractive and Repulsive Forces 23 Ionic Bonding 24 Covalent Bonding 25 Metallic Bonding 28 Hydrogen Bonding 29 van der Waals Bonding 29 // Further Reading 30 // Discussion and Problems 30 // Mechanical Properties 33 // Elastic Deformation 35 // Macroscopic Picture 35 // Elastic Constants 35 // Poisson’s Ratio 36 // Relation between Elastic Constants 37 // Microscopic Picture 37 // Plastic Deformation 38 // Estimate of the Yield Stress 39 // Point Defects and Dislocations 4J // The Role of Defects in Plastic Deformation 41 // Fracture 43 // Further Reading 44 // Discussion and Problems 45 // Thermal Properties of the Lattice 47 // Lattice Vibrations 47 // A Simple Harmonic Oscillator 47 // An Infinite Chain of Atoms 48 // One Atom Per Unit Cell 48 // The First Brillouin Zone 51 // Two Atoms per Unit Cell 52 // A Finite Chain of Atoms 53 // Quantized Vibrations, Phonons 55 // Three-Dimensional Solids 57 // Generalization to Three Dimensions 57 // Estimate of the Vibrational Frequencies from the Elastic // Constants 58 // Heat Capacity of the Lattice 60 //
Classical Theory and Experimental Results 60 // Einstein Model 62 // Debye Model 63 // Thermal Conductivity 67 // Thermal Expansion 70 // Allotropie Phase Transitions and Melting 71 // References 74 // Further Reading 74 // Discussion and Problems 74 // Electronic Properties of Metals: Classical Approach 77 // Basic Assumptions of the Drude Model 77 // Results from the Drude Model 79 // DC Electrical Conductivity 79 HaU Effect 81 // Optical Reflectivity of Metals 82 The Wiedemann-Franz Law 85 Shortcomings of the Drude Model 86 Further Reading 87 Discussion and Problems 87 // 6 Electronic Properties of Solids: Quantum Mechanical Approach 91 // The Idea of Energy Bands 92 // Free Electron Model 94 // The Quantum Mechanical Eigenstates 94 // Electronic Heat Capacity 99 // The Wiedemann-Franz Law 100 // Screening 101 // The General Form of the Electronic States 103 // Nearly Free Electron Model 106 // Tight-binding Model 111 // Energy Bands in Real Solids 116 // Transport Properties 122 // Brief Review of Some Key Ideas 126 // References 127 // Further Reading 127 // Discussion and Problems 127 // 7 Semiconductors 131 // Intrinsic Semiconductors 132 // Temperature Dependence of the Carrier Density 134 // Doped Semiconductors 139 // n and p Doping 139 // Carrier Density 141 // Conductivity of Semiconductors 144 // Semiconductor Devices 145 // The pn Junction 145 // Transistors 150 // Optoelectronic Devices 151 // Further Reading 155 // Discussion and Problems 155 // 8 Magnetism 159 // Macroscopic Description 159 // Quantum Mechanical Description of Magnetism 161 // Paramagnetism and Diamagnetism in Atoms 163 // Weak Magnetism in Solids 166 // Diamagnetic Contributions 167 // Contribution from the Atoms 167 // Contribution from the Free Electrons 167 // Paramagnetic Contributions 168 // Curie Paramagnetism 168 // Pauli Paramagnetism 170 // Magnetic Ordering 171 //
Magnetic Ordering and the Exchange Interaction 172 // Magnetic Ordering for Localized Spins 174 // Magnetic Ordering in a Band Picture 178 // Ferromagnetic Domains 180 // Hysteresis 181 // References 182 // Further Reading 183 // Discussion and Problems 183 // Dielectrics 187 // Macroscopic Description 187 Microscopic Polarization 189 The Local Field 191 // Frequency Dependence of the Dielectric Constant 192 // Excitation of Lattice Vibrations 192 // Electronic Transitions 196 // Other Effects 197 // Impurities in Dielectrics 197 // Ferroelectricity 198 // Piezoelectricity 199 // Dielectric Breakdown 200 // Further Reading 200 // Discussion and Problems 201 // Superconductivity 203 // Basic Experimental Facts 204 // Zero Resistivity 204 // The Meissner Effect 207 // The Isotope Effect 209 // Some Theoretical Aspects 210 // Phenomenological Theory 210 // Microscopic BCS Theory 212 // Experimental Detection of the Gap 218 // Coherence of the Superconducting State 220 // Type I and Type II Superconductors 222 // High-Temperature Superconductivity 224 // Concluding Remarks 226 References 227 // 10.8 Further Reading 227 // 10.9 Discussion and Problems 227 // 11 Finite Solids and Nanostructures 231 // 11.1 Quantum Confinement 232 // 11.2 Surfaces and Interfaces 234 // 11.3 Magnetism on the Nanoscale 237 // 11.4 Further Reading 238 // 11.5 Discussion and Problems 239 // Appendix A 241 // Explicit Forms of Vector Operations 241 Differential Form of the Maxwell Equations 242 Maxwell Equations in Matter 243 // Index 245

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC